Эфемериды sp3. GPS: основые понятия и термины. Простыми словами о сложном

Что такое астрологические таблицы эфемериды? Для чего они необходимы? В астрономии эфемеридой называют таблицу небесного местонахождения Луны, Солнца, планет и иных космических объектов, вычисленных через одинаковые отрезки времени. К примеру, на двенадцать часов ночи каждых суток.

Звёздными эфемеридами называют таблицы, в которых указано видимое положение звёзд, подвластное влиянию нутации, процессии и аберрации. Также эфемеридой называют формулу, с помощью которой рассчитывают момент прихода мгновения следующего момента минимума для затемнённых переменных систем звёзд.

Применение

Как используются таблицы эфемерид? С помощью них определяют координаты наблюдателя. Этим термином также именуют данные положения синтетических спутников Земли, применяемые для навигации, к примеру, в системе NAVSTAR (GPS), Galileo, «Глонасс».

Сведения о месторасположении спутников преподносятся в составе особых сообщений. При данных обстоятельствах говорят о передаче эфемерид.

Исторические издания

Известно, что в 1474 году Региомонтан издал свои знаменитые таблицы эфемерид в Нюрнберге. В этом труде находились эфемериды на 1475-1506 год, которые были рассчитаны на каждый день. Эта книга содержала таблицы положений планет, условия соединения светил и затмений.

Современные издания

Сегодня таблицы эфемерид публикуются в важнейших астрологических сборниках: «Астрономический ежегодник» (издаётся РАН с 1921 года), Nautical Almanac, American Ephemeris, Berliner Astronomisches, Connaissance des Temps. Кроме того, существуют сайты, с помощью которых можно рассчитать эфемериды. Их создают как энтузиасты, так и профессионалы.

Так, известно, что на сайте «НАСА» Эспеньяк Фред опубликовал данные положения планет солнечной системы, Луны и Солнца на 1995-2006 год. А на сайте «Института расчёта эфемерид и небесной механики» имеется калькулятор координат космических объектов. Кроме того, существует библиотека, с помощью которой можно на листе Excel провести астрономические подсчёты, используя эфемериды Швейцарии, JPL и Мошьера.

Расчёт

Таблицы эфемерид находятся на вооружении у каждого астролога. Сегодня движение объектов вокруг Солнца изучено очень хорошо. Разными астрологическими объединениями созданы математические формы для вычисления эфемерид, соперничающие между собой по точности. Эти образцы описаны в особых астрономических изданиях.

Старая теория

Версия ILE является улучшенной теорией Брауна. Она впервые предложена Э. У. Брауном в 1919 году в его работе «Таблицы перемещения Луны», которая была усовершенствована У. Дж. Экертом в 1954 году в работе «Улучшенная лунная эфемерида». В дальнейшем в теорию ещё несколько раз вносились изменения.

Эта модель ранее использовалась Ф. Эспеньяком для вычисления затмений, предоставленных сайтом «НАСА».

Новое решение

Версия VSOP82 описывает перемещение планет вокруг Солнца. Она предложена в 1982 году П. Бретаньоном и напечатана в астрологическом альманахе «Астрофизика и астрономия» под названием «Теория перемещения всех планет - решение VSOP82».

Ещё одна версия

Версия ELP 2000 описывает лишь эфемериды Луны. Она напечатана в астрологическом сборнике «Астрофизика и астрономия» в 1983 году М. Шапрон-Тузэ и Ж. Шапрон, а также в статье «Эфемериды Луны ELP 2000». Данная теория содержит 7 684 периодических члена для эклиптической широты Луны, 20 560 - для эклиптической долготы и 9 618 - для расстояния. Амплитуда младших членов соответствует 2 см для дистанций и 0,00001 секунды дуги. В упрощённом виде модель применяется Ф. Эспеньяком для вычисления затмений, обнародованных на сайте «НАСА».

Публикации СССР

А что можно сказать об отечественной астрологии? На основе версии DE200/LE200 публиковал эфемериды Луны, Солнца и планет «Астрологический ежегодник СССР» (начиная с 1986 года).

Модель лаборатории JPL

Версия DE403/LE403 описывает перемещение планет вокруг Солнца и делает акцент на координатах Луны. Её разработали сотрудники лаборатории JPL Стэндиш, Уильямс, Ньюхолл и Фолкнер. Она опубликована в статье «Лунные и планетарные эфемериды JPL DE403/LE403» (1995 г.) в специальном издании указанной лаборатории. Сегодня существуют новые таблицы эфемериды, разработанные JPL.

Удобные таблицы

Положение планет обсчитано звездочётами на много лет вперёд, а результаты вычислений переведены в таблицы. В них находятся данные видимых позиций планет, которые вычисляют с помощью компьютера, руководствуясь законами механики космоса. Положения небесных объектов в таблицах указаны с конкретным шагом, обозначающим отрезок времени между двумя связанными мгновениями, на которые выполняется вычисление. Удобно применять следующие таблицы с шагом в одни сутки:

  • Американская таблица эфемерид Михельсона для XXI века с 2001 по 2050 год и для ХХ века с 1900 по 2000 год.
  • Розенкрейцеровские эфемериды (1900-2000 год).
  • таблицы Рафаэля (позиции планет на каждый год).

Известно, что в эфемеридах Михельсона положение небесных объектов дано на гринвичскую полночь каждых суток, а данные представлены помесячно. На каждой странице размещены величины долготы планет на два месяца в виде пары блоков (Longitude).

Данный сервис предоставляет возможность подобрать файлы точных эфемерид зная дату наблюдений. Просто укажите дату и нажмите "Подобрать".

Назначение точных эфемерид - более точная обработка статических наблюдений. Их применение в обработке не гарантирует высокое качество, но может повысить колличество фиксированных решений если работа велась в сложных условиях (ограниченный обзор в городе с плотной застройкой, вблизи деревьев и т.п.).

Данные рассчитываются и хранятся в публичном доступе на FTP-серверах Международной ГНСС службы и Архива данных космической геодезии NASA .

Наилучшие final эфемериды вычисляются и публикуются с задержкой 12-18 дней. В реальном времени (или с задержкой в несколько часов) доступны т.н. ultra-rapid и rapid продукты. Их точность хуже чем у финальных, но в то же время значительно лучше чем у навигационных.

Файлы хранятся в запакованом виде, распаковываются большинством архиваторов, например 7zip


Полезности

The World Coordinate Converter

Сайт основан на добровольных началах, потому при входе спрашивает о пожертвовании в свою пользу. В основном будет полезен если необходимо преобразовать координаты между различными международными системами координат, и некоторыми государственными (параметры которых открыты для публичного доступа, не про Украину), например ETRF89, WGS84, WGS84 Web Mercator и публично доступные государственные.

Геокалькулятор НДІГК

Тот самый геокалькулятор государственной службы Украины по вопросам геодезии, картографии и кадастра.

TrimbleRTX

Сервис для постобработки от Trimble, результат выдаёт в виде ETRS и ITRF различных реализаций. Необходимы длительные наблюдения для приемлемой точности. Опирается на наблюдения международных станций и некоторые свои. Бесплатно, но с регистрацией

AusPOS

Сервис для постобработки Geoscience Australia от Австралийского правительства, результат выдаёт в виде ITRF2014. Необходимы длительные наблюдения для приемлемой точности. Опирается на наблюдения международных станций. Бесплатно, без регистрации.

Планировщики GNSS съёмки

Инструменты для планирования GNSS измерений на определённый период, позволяют заранее оценить видимые спутники при заданном углу отсечки, их положение над горизонтном. Данные инструменты будут полезны при планировании оптимального времени съёмки в местах с плохим обзором небосвода (карьеры, города) и при использовании односистемных приёмников.

Спутник GPS - это платформа, несущая комплекс оборудования, обеспечивающего энергопитание спутника, возможность корректировки орбиты и работоспособность. Питание обеспечивают солнечные батареи и аккумуляторы. Орбиту корректируют с помощью двигателей небольшой мощности.

Термин работоспособность означает способность выполнять функции, возложенные на спутник. Спутник имеет антенну и приемник для приема сигнала со станций закладки информации. Спутник имеет бортовой компьютер для запоминания информации, для ее трансляции и для координации работы спутника в целом. Ритм работы всей аппаратуры задают четыре цезиевых и (или) водородных стандарта частоты и времени. Частота колебаний стандартов равна 10,23 Мгц. Именно из этих колебаний путем умножения частоты, ее деления или преобразования гармонического колебания в кодовый сигнал получают все остальные сигналы спутника - несущие и модулирующие (кодирующие). Спутник имеет передатчик и антенну для передачи сигнала пользователю системы. На спутнике расположена также аппаратура стабилизации и ориентации, другая аппаратура.

Известны три класса спутников: Block I, Block II и Block IIR. Спутники Block I каждый весом в 845 килограммов запускали с 1978 по 1985 год с базы военно-воздушных сил в Калифорнии. Использовали ракету Atlas F. Заложенная в конструкцию продолжительность жизни спутника составляла 4,5 года. Некоторые спутники функционировали почти в три раза дольше. Угол наклона плоскости орбиты к плоскости экватора у спутников этого класса составлял 63 градуса. У запущенных позже спутников - 55 градусов. Спутники этого класса являлись в некотором смысле пробными, хотя полностью выполняли возложенные на них функции. Спутники следующей серии Block II были предназначены для создания операционного созвездия.

Первый спутник Block II, стоящий примерно 50 миллионов долларов и весящий более полутора тонн, был запущен 4 февраля 1989 года космическим центром имени Кеннеди с военно-воздушной базы Мыс Канавералл . штат Флорида, США. Использовали ракету-носитель Delta II. Конструкционная продолжительность жизни спутника этого класса составляла 6 лет, хотя некоторые спутники могли функционировать и 10 лет, поскольку на это время хватало запаса расходуемых материалов, в основном топлива. Различие между Block I и Block II связано с национальной безопасностью США. Сигнал спутника Block I был полностью доступен гражданскому пользователю, тогда как некоторые сигналы Block II ограничивают эту доступность.

Спутники класса Block IIR, практически полностью заменившие в настоящее время ранее запущенные, имеют конструкционную продолжительность жизни в 10 лет. Буква “R” означает модификацию или замену. На борту имеются водородные мазеры взамен рубидиевых и цезиевых стандартов частоты, установленных на спутниках предшествующих классов. Каждый спутник весит более двух тонн, стоит около 25 миллионов долларов. Запускают эти спутники с помощью Шаттла. Режим работы таков, что гражданский пользователь имеет к сигналу спутника еще меньший доступ. Более подробно о режиме ограничения доступа сказано в разделах 3.1 и 3.3.

3.1. Структура сигнала спутника

Основой работы системы является точное измерение времени и временных интервалов. Термин точное означает, что для достижения наивысшей точности используют все доступные средства. На главной станции управления и контроля, а также на каждом спутнике установлены наиболее точные из существующих сейчас цезиевые и водородные стандарты частоты и времени. Частота колебаний стандарта равна 10,23 Мгц. Все колебания и сигналы спутника получают из этой частоты путем когерентного преобразования: умножения и деления частоты опорного генератора - стандарта частоты и времени. Два колебания несущей частоты получают умножением частоты опорного генератора на соответствующий коэффициент. Колебание L1=1575,42 МГц получают умножением на 154. Колебание L2=1227,60 МГц получают умножением на 120. Измерения на двух несущих частотах используют для реализации дисперсионного способа учета влияния ионосферы и для облегчения процедуры разрешения многозначности фазовых измерений.

Несущие колебания модулируют кодовыми сигналами: С/А-кодом и Р-кодом. При этом Р-кодом модулируют оба несущих колебания; С/А-кодом модулируют только колебания первой несущей частоты. Тактовая частота Р-кода равна частоте колебаний опорного генератора. Тактовую частоту С/А-кода получают делением частоты колебаний опорного генератора на десять. О кодах написано в разделе 3.3. Кроме того, несущие колебания модулированы навигационным спутниковым сообщением.

3.2. Навигационное сообщение, эфемериды

Навигационное сообщение называют также спутниковым сообщением или навигационным спутниковым сообщением . В англоязычной терминологии - это navigation massage. Встречается даже название информационное сообщение, хотя, по определению, любое сообщение не может не содержать информации. Далее для краткости будем использовать термин сообщение .

Сообщение содержит информацию в объеме 1500 бит и передается за 30 секунд. Но не вся информация передается в этот краткий отрезок времени. Например, альманах передается в течение нескольких сообщений, об альманахе см. далее. Сообщение содержит пять блоков (кадров, подкадров, по-английски - subframes). Каждый блок транслируется в течение 6 секунд и содержит 10 слов. Каждое слово содержит 30 бит.

Каждый блок начинается с телеметрического слова - telemetry word (TLM). Оно содержит синхронизирующий формат и диагностическое сообщение - сообщение или часть сообщения о статусе спутника и системы в целом. Далее идет ключевое слово - hand-over word (HOW). Этот термин можно перевести как слово, передаваемое из рук в руки. По смыслу - HOW - это временная метка.

Первый блок содержит параметры часов спутника и коэффициенты модели ионосферы. Параметры часов - это поправка и ход часов спутника относительно GPST. Информацию о параметрах модели ионосферы используют только при работе с одночастотными приемниками. Если есть двухчастотный приемник, то применяют дисперсионный способ.

Второй и третий блок содержат эфемериды спутника, транслирующего данное сообщение. Эти эфемериды называют широковещательными. Их получают из результатов наблюдения спутников с пяти станций слежения.

Наблюдение спутников станциями слежения, первичная обработка результатов, передача их на главную станцию управления и контроля, обработка результатов там, передача их на станции закладки информации и сама закладка требуют времени. Следовательно, хранящиеся в памяти бортовых компьютеров и транслируемые широковещательные эфемериды в момент их трансляции уже устарели. Поэтому транслируемые эфемериды - это результат предсказания, экстраполяции. По этой же причине эфемериды закладывают в память бортовых компьютеров спутников как можно чаще - примерно каждый час.

Четвертый блок зарезервирован для передачи служебной информации. Приемники гражданских пользователей не имеют возможности регистрации этой информации.

Пятый кадр содержит альманах спутников и информацию о состоянии системы. Альманах - это приближенные эфемериды спутников системы и данные о здоровье каждого спутника. Каждый спутник каждые 12,5 минут транслирует информацию о созвездии спутников. Чтобы получить альманах до начала наблюдений и использовать эти данные на этапе планирования необходимо выставить приемник на любое открытое место, подержать его там включенным минут 15-20, выключить и перекачать данные на офисный компьютер. В процессе наблюдений свежий альманах получают вообще без дополнительных затрат времени.

Эфемериды спутника - это полный набор данных об орбите спутника и о положении спутника на орбите. Пользователя GPS интересуют геоцентрические координаты спутника в системе WGS84 в момент ухода сигнала с этого спутника. Аппаратура пользователя вычисляет координаты спутника, используя данные, содержащиеся в файле эфемерид. Эфемеридная информация отнесена к референцному (опорному,исходному) моменту

t o, этот момент указан в файле эфемерид . В сообщении приведен также AODE (Age of Data) - “возраст” эфемеридных данных, то есть интервал времени, прошедший с момента закладки данных в память бортового компьютера. Напомним, что параметры эфемерид являются оскулирующими и относятся к референцному моменту. Далее конспективным образом перечислена информация, содержащаяся в широковещательных эфемеридах.
- корень квадратный из большой полуоси эллипса орбиты. Именно корень квадратный из большой полуоси входит в формулу для вычисления орбитальных координат спутника по его эфемеридам; кроме того, информация о корне квадратном из полуоси требует меньше места в сообщении, чем информация об оси.
е - эксцентриситет орбиты
W - прямое восхождение восходящего узла орбиты спутника
W ` - скорость изменения прямого восхождения восходящего узла орбиты спутника
i - угол наклона плоскости орбиты к плоскости экватора
i` - скорость изменения угла наклона
М о - средняя аномалия на референцный момент
D n - отклонение значения среднего движения от предвычисленного
C uc и C us - амплитуды косинусоидального и синусоидального членов в формуле для поправки в аргумент широты
C rc и С rs - амплитуды косинусоидального и синусоидального членов в формуле для поправки в радиус орбиты
C ic и С is - амплитуды косинусоидального и синусоидального членов в формуле для поправки в угол наклона орбиты. Формулы для возмущений оскулирующих элементов учитывают только влияние на движение спутника сжатия Земли

3.3. Вычисление орбитальных координат по эфемеридам

Рассмотрим, как используют эфемериды спутника для вычисления его прямоугольных координат Х о и Y о в экваториальной системе координат на момент наблюдений. Формулы (1) являются конечным этапом решения задачи.

Х о = r cos u , Y o = r sin u . (1) Отсюда видно, что задача сводится к определению на момент наблюдений радиуса орбиты r спутника и аргумента широты u . Момент наблюдений t получают из фиксации момента прихода на приемник временной метки. В качестве исходной информации используют также значение одной из фундаментальных геодезических постоянных m - произведение гравитационной постоянной на массу Земли . В WGS84 m =3,986008· 10 14 м/сек 2 . Процедуру вычисления орбитальных координат разделяют на четыре этапа. На первом этапе вычисляют истинную аномалию V . Порядок вычислений следующий. Вычисляют временной интервал D t , прошедший от референцной исходной эпохи t o до момента t наблюдений :

D t=t-t o.

Вычисляют приближенное значение среднего движения n o = (m /a- 3 )- 1/2. Вычисляют уточненное значение среднего движения n=n o +D n. Вычисляют среднюю аномалию M=M o +nD t. Используя уравнение Кеплера M=EsinE, вычисляют эксцентрическую аномалию Е . И окончательно на этом этапе вычисляют истинную аномалию V , используя формулы : cosV=(cosE-e)/(1-ecosE) и sinV=(1-e- 2 sinE)- (1/2)/(1-ecosE). На втором этапе вычисляют значение аргумента широты U. Порядок вычислений следующий. Вычисляют приближенное значение аргумента широты U o =V+w . Вычисляют поправку в приближенное значение аргумента широты за влияние сжатия Земли на орбиту спутника по формуле : D U=C uc cos2U o + C us sin2U o. Напомним, что коэффициенты С содержатся в эфемеридах. Смысл индексов при этих коэффициентах состоит в следующем. Индекс U означает, что вычисляется именно аргумент широты U. Индексы С и S означают, что они стоят соответственно при косинусоидальном и при синусоидальном членах. Далее такая система индексации сохранена. Окончательно на этом этапе вычисляют уточненное значение аргумента широты U=U o +D U. На третьем этапе вычисляют радиус r о рбиты спутника. Порядок вычислений следующий. Вычисляют приближенное значение радиуса орбиты, используя формулу : r o =a(1-ecosE). Вычисляют поправку в радиус орбиты за сжатие Земли : D r=C rc cos2U o + C rs sin2U o. Смысл нижних индексов тот же, что и на предшествующем этапе. И окончательно на этом этапе вычисляют уточненное значение радиуса орбиты: r=r o +D r. Координаты спутника, полученные по широковещательным эфемеридам, могут содержать ошибку порядка 100 метров. Причины столь невысокой точности следующие. Во-первых, широковещательные эфемериды по своей сути являются результатом предсказания орбиты, то есть это - экстраполированные эфемериды. Во-вторых, при их вычислении учитывают только один, правда, наиболее существенный, фактор, возмущающий орбиту спутника - влияние сжатия Земли. Неучет остальных факторов ведет к падению точности при сколько-нибудь длительной экстраполяции. И в-третьих, для неавторизованного пользователя эфемериды намеренно загрубляют.

3.4. Коды

Несущие колебания спутника манипулированы по фазе кодовыми сигналами. Вернемся к рассмотрению кодов, начатому в разделе 3.1.

По статистическим характеристикам коды являются случайными, следовательно образуют широкополосный сигнал. Длина когерентности такого сигнала мала, поэтому при корреляционной обработке получают узкий и единственный главный максимум функции корреляции. В свою очередь, это позволяет однозначно и с высокой точностью измерять временную задержку в кодовом режиме. Приемно-регистрирующая аппаратура, не “знающая” закономерности формирования кода, воспримет сигнал спутника как шумовой, случайный. На самом деле коды формируют закономерно, хотя вид закона сложен. По причине сказанного сигнал спутника называют псевдошумовым, а коды - псевдослучайными.

Существуют два вида измерительных кодов. Легко доступный, легко обнаруживаемый, широковещательный код - С/А-code - Coarse Acquisition code. Точный P-code - Precision code. Спутник имеет индивидуальный С/А-код, повторяющийся каждую миллисекунду. Приемник идентифицирует и захватывает сигнал спутника на частоте L1 легко, поскольку эта частоте модулирована С/А-кодом. Гораздо сложнее дело обстоит с захватом сигнала спутника на частоте L2 , то есть на второй несущей частоте. С/А-код на нее не подают, так что захват сигнала и последующие наблюдения возможны только в Р-коде. Это затрудняет работу пользователя и это затруднение намеренно заложено в структуру системы.

Спутнику в данную эпоху присущ Р-код, повторяющийся через неделю. В то же время, системе присущ весь Р-код в целом. Длительность Р-кода системы равна 266,4 суток. Другими словами, весь длинный Р-код системы разделен на недельные отрезки, интервалы. Каждый отрезок в данную эпоху приписан конкретному спутнику. Изначально доступ к Р-коду имели только авторизованные пользователи, в основном, американские военные. Сейчас аппаратура практически всех пользователей имеет доступ к Р-коду. Этот доступ осложнен тем, что Р-кодовый сигнал подвергнут дополнительному кодированию (шифрованию) так называемым Y-кодом. Как сказано в литературе, сделано это для того, чтобы предотвратить возможность нарушения работы системы путем внешнего вмешательства. Такой режим работы назван Anti-Spoofing (AS) - режим противодействия несанкционированному воздействию. Он сводится именно к использованию Y-кода. В свою очередь, Y-кодирование - это обмен недельными отрезками Р-кода между спутниками в последовательности, известной лишь персоналу, управляющему системой. Если эта последовательность неизвестна пользователю, то есть его приемник не содержит соответствующего чипа, то отсутствует возможность захватить сигнал в Р-коде на второй несущей частоте и дорогой и высокоточный двухчастотный приемник может работать только как одночастотный. Производители аппаратуры, однако, тем или иным путем преодолели эти трудности, например, заплатив за возможность установки в приемники соответствующих чипов. Поэтому представляется, что необходимость в Y-кодировании отпала.

Наблюдения в С/А-коде называют Standard Positioning Servise (SPS) - стандартной службой позиционирования. Навигационные координаты в этом режиме определяют с ошибкой 100-200 метров. Наблюдения в Р-коде называют Precise Positioning Servise (PPS) - служба определения точного местоположения. Навигационные координаты в этом режиме определяют с ошибкой порядка 10-20 метров.

В 1973 году данные программы объединили в одну, и военно-воздушные силы США назначили руководящими в разработке системы. Это стало началом истории построения системы NAVSTAR (Navigation Satellite Timing and Ranging) - глобальной системы местоопределения (Global Positioning System). С 1983 года, после того, как к ее информации получили доступ гражданские лица, а в 1991 году были сняты ограничения на продажу GPS-оборудования в страны бывшего СССР, распространение получила широко известная аббревиатура GPS.

Изначально планировалось, что система будет служить для высокоточного наведения боевых ракет, а навигационные функции системы были отодвинуты на второй план.

Первый спутник системы был запущен в 1978 году, а основная часть спутников системы были запущены на орбиты в середине 80-х годов. В 1994-м на орбиту был помещен спутник, позволивший завершить построение системы из 24 спутников.

Период нахождения спутника на орбите примерно равен 10 годам. Отработавшие свой срок спутники планомерно выводят из системы и утилизируют.

В России действует аналогичная система спутниковой навигации ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система), принцип работы которой во многом подобен GPS, точность определения координат которой, однако, заметно меньше.

Спутниковые радионавигационные системы - это всепогодные системы космического базирования. Они позволяют определять текущие местоположения подвижных объектов и их скорость, а также осуществлять точную координацию времени.

В состав системы входят:

  • созвездие ИСЗ (космический сегмент);
  • сеть наземных станций слежения и управления (сегмент управления);
  • GPS-приемники (аппаратура потребителей).

Космический сегмент (орбитальная группировка) системы GPS на данный момент содержит 24 спутника. У каждого спутника имеется порядковый номер (PRN), всего номеров зарезервировано 32. По состоянию на 27 декабря 2005 года, на орбите находилось 29 рабочих спутников, 5 из которых либо уже отработали свой срок, либо готовились к вводу в систему для замены отработавших. Период обращения одного спутника составляет 11 часов 56,9 минут. Вес каждого спутника около 835 кг, линейный размер более 5 м (с развернутыми солнечными батареями). На борту каждого спутника установлены атомные часы, обеспечивающие точность 10 9 (0,000000001) с, вычислительно-кодирующее устройство и передатчик мощностью 50 Вт. Спутники размещены на 6 орбитальных плоскостях. Высота орбит примерно равна 20 200 км, угол наклона орбит составляет 55 градусов (рис. 1).

Передающая аппаратура излучает синусоидальные сигналы на двух частотах: L1 = 1575,42 МГц и L2 = 1227,60 МГц. Перед этим сигналы модулируются псевдослучайными цифровыми последовательностями (эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2 - только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени. Частота L1 предназначена для широкого круга гражданских потребителей, а доступ к сигналам частоты L2 в основном получают военные и федеральные службы США. Точность автономного определения расстояния по P-коду примерно на порядок выше, чем по C/A-коду.

Данные параметры расположения группировки космических аппаратов выбраны не случайно. В любой момент времени в любой точке земного шара можно получить сигналы как минимум от 3-х спутников, что является необходимым условием определения координат. Для более точного определения местоположения необходим сигнал от четвертого спутника.

Наземный сегмент системы представляют контролирующе-измерительные станции для мониторинга спутников. Они расположены на Кваджалейне, на острове Вознесения, на Гавайях, Диего-Гарсия и Колорадо-Спрингс. Также в системе работают три наземные антенны (остров Вознесения, Диего-Гарсия и Кваджалейн). Управление осуществляется на центральной станции, расположенной на авиабазе в Шривере, Колорадо (Schriever Air Force Base, Colorado).

Приемные устройства - GPS-навигаторы - работают в комплексе со спутниками. GPS-навигатор получает со спутников следующую информацию: «псевдослучайный код» (PRN - pseudo-random code), «эфемериды» (ephimeris) и «альманах» (almanach). По наличию этих данных в GPS-навигаторах определяют вид старта или, по-другому, инициализации (под стартом подразумевается начало процесса получения данных хотя бы с 3 спутников, что достаточно для 2D-навигации). Каждый спутник передает только собственную эфемериду, в то время как альманах передается каждым спутником обо всех спутниках сразу. Стартовать приемник может в разных режимах. «Холодный старт» происходит в том случае, когда информация об альманахе и эфемеридах сильно устарела. Данные могут утеряться в случае переноса GPS-приемника на большое расстояние, или же если часы приемника сбились. Как правило, «холодный старт» занимает от нескольких до 45 минут. «Теплый старт» - альманах сохранился, но эфемериды уже потеряны и часы приемника еще «знают» точное время. Такой старт занимает меньше времени, от 30 секунд до 10–15 минут, в зависимости от условий приема. В этом случае GPS-приемнику необходимо получить данные только эфемерид. И, наконец, самый быстрый старт - «горячий». Занимает от нескольких секунд до 5 минут. «Горячий старт» может быть осуществлен, когда в навигаторе имеется и альманах, и эфемериды.

Таким образом, большей частью время между включением и началом выдачи координат зависит от того, как давно было выключено устройство, а также от чувствительности прибора; модель приемника влияет на скорость захвата спутников в меньшей степени.

Функционирование аппаратуры потребителя можно понять из обобщенной схемы (рис. 2).

Основное сообщение, передаваемое с каждого навигационного спутника GPS, формируется в виде кадра. Поток навигационных данных передается со скоростью 50 бит/с. Длительность информационного символа «0» или «1» равна 20 мс. Кадр состоит из пяти под-кадров, причем четвертый и пятый подкадры разделены на 25 страниц каждый. Подкадры с первого по третий, а также каждая страница четвертого и пятого подкадров содержат по 300 символов, которые разделены на 10 слов по 30 символов в слове.

В таблице 1 показана информация, передаваемая с навигационного спутника.

Таблица 1.

Таблица 2.

Нулевой отсчет времени GPS определен в полночь с 5 на 6 января 1980 года. Неделя является самой большой единицей измерения времени в системе GPS. Неделя определена как 604 800 с.

Эфемериды представляют собой уточненные параметры движения спутников. Основываясь на данных альманаха, GPS-приемник «сканирует» небо и при получении данных от спутника уточняет его эфемериды.

Рис. 3.

Чтобы понять, как GPS-навигатор определяет координаты, необходимо иметь представление о системе координат, в которой происходит движение спутников и определение координат конечных потребителей.

Наблюдатель на Земле может представить небесную сферу, спроецированную на плоскость так, чтобы центр совпадал с местоположением наблюдателя.

Именно в этой проекции пользователю GPS-навигатором показывается примерное расположение спутников (рис. 3).

Как видно из рисунка (снимок с экрана GPS-навигатора), спутников в пределах видимости находится девять (снимок производился при включенном режиме симуляции, то есть когда навигатор не ловит сигналы со спутников, а моделирует возможные ситуации). В реальности спутников на проекции сферы видно не более восьми, а сигналы принимаются максимум с четырех-шести. Закрашенный столбик над номером спутника показывает на устойчивый прием сигналов, а высота столбца позволяет оценить качество приема. В момент, когда GPS-навигатор начинает получать информацию со спутника, над его номером появляется незакрашенный прямоугольник. Закрашивается он при уточнении параметров орбиты спутника и начале получения данных, на основе которых идет непосредственный расчет координат пользователя.

Данные спутниковых систем и параметры орбит спутников рассчитываются относительно центра масс Земли. В бытовых GPS-навигаторах используется единая система координат, наиболее популярная в системах гражданской авиации, WGS-84.

Глобальная система координат WGS–84 определена следующим образом.

Начало координат 0 расположено в центре массы Земли;

  • ось 0Х - пересечение плоскости исходного меридиана WGS–84 и плоскости экватора;
  • ось 0Z - направлена на Северный полюс Земли;
  • ось 0У - дополняет систему до правой системы координат.

Исходный меридиан WGS–84 совпадает с нулевым меридианом, определенным Международным бюро времени (BIN).

При наличии сигнала от одного спутника (№1), известной скорости распространения электромагнитного сигнала в пространстве (300 000 км/с) и времени, за которое сигнал дошел от спутника до GPS-приемника, стало возможным рассчитать геометрическое место точек нахождения приемника сигнала (им будет являться сфера с радиусом, равным расстоянию от спутника до приемника, в центре которой находится спутник).

Если GPS-навигатор начал принимать сигналы от второго спутника, то аналогично первому случаю, строится сфера вокруг спутника №2. Так как GPS-приемник должен находиться на обеих сферах сразу, то теперь строим пересечение двух сфер. Каждая точка получившейся окружности может являться местом нахождения приемника в пространстве.

Наконец, когда приемник поймает сигнал от спутника №3, строится еще одна сфера, при пересечении с окружностью она дает нам две точки. Одна из этих точек, как правило, имеет довольно неправдоподобное расположение, и в процессе вычисления по алгоритму она отбрасывается. Таким образом, мы получаем результат: широту и долготу.

Но если учитывать огромную скорость распространения электромагнитной волны, ошибка в расчетах на тысячные доли секунды может привести к довольно серьезным погрешностям в вычислении расстояния до спутника, а затем и в построении сфер и определении координат. Таким образом, мы подобрались к одному важному нюансу - для корректного определения координат необходим четвертый спутник.

После построения трех сфер приемник начинает манипулировать с временной задержкой. При каждом новом сдвиге времени приемника строятся новые сферы, точка пересечения их «расплывается» в треугольник. То есть сферы перестают пересекаться, а местоположение GPS-приемника может с определенной вероятностью быть в любой из точек треугольной области. Затем временные сдвиги продолжаются до тех пор, пока все три сферы снова не пересекутся в одной точке. Получаем довольно точные координаты. И чем больше спутников «видит» навигатор, тем точнее мы можем скорректировать время с вытекающим из этого увеличением точности позиционирования. При наличии четвертого спутника начинает работать так называемая 3D-навигация, и мы имеем возможность определить высоту над уровнем моря, скорость передвижения по поверхности и скорость вертикального перемещения.

Немного о точности. При создании системы в нее специально внесли так называемый режим S/A (Selective Availability - ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Принцип действия данного режима заключается в искусственном рассогласовании часов спутника и приемника. Поэтому даже при хорошем приеме сигналов нескольких спутников точность не превышала 100 метров. Однако в 2000 году данный режим был отменен, и официально система GPS стала давать возможность определять координаты более точно. Как правило, указывают точность в 20…30 метров. Если использовать специальные алгоритмы пост-обработки, точность можно повысить вплоть до нескольких миллиметров, но это умеют делать геодезические системы. Для работы с такими системами нужен сертификат и разрешение, а их стоимость превышает стоимость бытовых навигаторов в десятки раз.

На точность определения координат существенное влияние оказывают ошибки, возникающие при выполнении процедуры измерений. Природа этих ошибок различна.

  1. Неточное определение времени. Вносит погрешность порядка 1 метра.
  2. Погрешности вычисления орбит спутников (уточнения эфемерид). Вносят погрешность порядка 1 метра.
  3. Ионосферные задержки сигнала. Вносят погрешность до 10 метров.
  4. Многолучевое отражение от высоких зданий, других объектов. Вносит погрешность до 2 метров.
  5. Геометрическое расположение спутников.
  6. Тропосферные задержки сигнала.

Литература

  1. Лекции доктора технических наук Валерия Викторовича Конина. http://www.kvantn.com.ua/resourse/All/lections/lect_cont.html /ссылка утрачена/
  2. Информация с сайта http://www.datalogger.ru/gps/ /ссылка утрачена/
  3. Информация с сайта http://www.ixbt.com/mobile/gps.html
  4. Информация на форуме сайта http://www.gpsinfo.ru/ /ссылка утрачена/
  5. Информация с сайта

Точность определения местоположения в навигационной системе ограничена из-за влияния различных факторов. Их можно разделить на две группы. Ошибки в расчётах местоположения спутников и влияние атмосферы (тропосферы и ионосферы) на скорость радиосигнала.

Как уже говорилось, навигационные спутники играют роль радиомаяков, передавая сигналы точного времени и свои координаты. Стоит отметить, что спутники ничего не знают о своём местоположении. Их координаты определяет сектор управления и в результате рассчитывает орбитальные характеристики – эфемериды. Эти эфемериды (набор численных коэффициентов) загружаются на спутник, который передаёт их вместе с остальной навигационной информацией. Приёмник GPS принимает сигнал со спутника и рассчитывает его координаты, используя полученный набор орбитальных коэффициентов. Эти коэффициенты (эфемериды) ведущая станция уточняет несколько раз за день по мере необходимости. Но тем не менее, расчётные координаты получаются неточными. Местоположение спутника определяется с ошибкой. Почему?

Если бы Земля имела форму шара с равномерной по глубине плотностью и других воздействий на спутник не было, то он двигался бы строго по одному и тому же эллипсу в соответствии с Первым законом Кеплера. Но форма Земли отличается от шара, кроме того, на спутник действуют Солнце и Луна, а также негравитационные факторы. Поэтому параметры эллипса непрерывно изменяются. Это приводит к ошибкам в расчётах. Вот таблица различных воздействий на спутник в порядке их убывания (А.Л. Генике, Г.Г. Побединский «Глобальные спутниковые системы …», 2004):

Таблица 1 . Влияние различных возмущений на движение навигационного спутника

Первое по списку – центральное поле Земли. Благодаря ему спутник и движется по эллипсу с ускорением 0,565 м/с 2 . Такое ускорение свободного падения на высоте 20,2 тыс. км. Гравитация – это всегда притяжение, поэтому первой (дипольной) поправки у гравитационного поля нет. Идёт сразу вторая зональная гармоника. Она вносит возмущение в 10 тысяч раз меньше: 5,3×10 – 5 м/с 2 . В результате за 1 час спутник может отклонится на 300 метров от расчётной траектории. А за 3 часа – уже на 2 км, так как ошибка возрастает нелинейно.

Гравитационное влияние Луны на порядок меньше, Солнца – ещё в 2 раза меньше. Из негравитационных воздействий на первом месте стоит солнечная радиация (солнечный ветер). Гравитационные аномалии вызваны неравномерным распределением масс внутри Земли (см. фото вверху). Они за час отклоняют спутник на 6 см. Лунные и солнечные приливы также вносят свой вклад в перераспределения масс на поверхности Земли. Несмотря на свою относительную малость, они за два дня могут отклонить спутник от расчётной орбиты на 2 метра.

Управляющий сектор ориентируется на эти данные, но не использует их в своих расчётах. Все эфемериды рассчитываются исключительно исходя из наблюдений. При расчёте орбитального движения принято считать, что спутник движется строго по эллипсу, словно бы и нет никаких возмущений. Эта орбита называется оскулирующей. Через малый промежуток времени параметры орбиты изменяются, и спутник движется по другому эллипсу. И так далее. Таким образом весь эффект от возмущений сводится исключительно к непрерывному изменению параметров оскулирующего эллипса.

Благодаря многочисленным наблюдениям за движением спутников, ведущая станция подбирает математическую модель, которая способна рассчитать это движение с наименьшими ошибками. Численные коэффициенты модели (эфемериды) регулярно обновляются и загружаются на спутники три раза в день. Кроме этого, эфемериды уточняются каждый час.

Важно отметить, что навигационная система постоянно развивается. Координаты опорных станций уточняются. Используя опорные станциями с более точными координатами, можно более точно определить эфемериды спутника и так далее.

Тем не менее, современные ошибки в определении эфемерид спутников приводят к ошибкам в расчёте их координат на уровне 10-20 метров. На первый взгляд, это кажется много. Это так, если определять координаты местоположения абсолютным (прямым) способом. Но в навигационной системе используется дифференциальный (относительный) способ определения местоположения (см. здесь). Благодаря этому способу удаётся повысить точность определения координат в сто раз и более.

Такая точность уже достаточна даже для проведения большинства геодезических работ. Но, скажем, для изучения движения земной коры, требуется ещё более высокая точность. В этих случаях используются не эфемериды, передаваемые по радиоканалу спутника, а их существенно уточнённые значения, полученные в результате последующих наблюдений. Длительные наблюдения за орбитами спутников позволяют уточнить значения эфемерид в прошлом. Эти уточнённые значения накапливаются в специальном банке, действующем в США при национальной геодезической службе (NGS).

Дополнительно