Mental Ray GI: освещение интерьера. Урок: архитектурная визуализация (mental ray)

Несмотря на то, что концепция Глобального освещения (GI) очень проста, правильное освещение сцен с использованием этого алгоритма вызывает некоторые трудности.

Как правило, возникает парадокс — mental ray довольно быстро обсчитывает сцены, но при включении GI мы видим ухудшение качества и пытаемся это исправить увеличением количества фотонов и уменьшением их радиуса (последнее определение не верно, но подробности в уроке) тем самым время расчетов увеличивается до бесконечности, а результата не видно. В уроке будет на примерах показаны проблемы обсчета и пути их решения.

Первая часть урока, короткая и теоретическая, для тех, кто первый раз столкнулся с алгоритмом глобального освещения, вторая часть практическая и подразумевает, что изучающие уже практически пользуются mental ray либо изучили все мои предыдущие уроки по освещению.

Выполняться будет в 3ds Max 2009.

В уроке я использую сокращения:

GI — Global Illumination — глобальное освещение

FG — Final Gather — финальная сборка (алгоритм непрямого освещения — подробнее Mental Ray Освещение часть 1 — FG

ИС — Источники света подробнее Mental Ray Освещение часть 3 — источники

Во второй части я показываю решение некоторых проблем, но не претендую на 100% правильности методов, все они следуют из индивидуальной практики.

Часть первая — теория

Глобальное освещение (далее GI) это алгоритм непрямого освещения, основан на генерировании источником света (далее ИС) GI-фотонов, которые встречаясь с объектом изменяются с учетом его материала и отразившись освещают рядом стоящие объекты. Наглядно я этот эффект изобразил на простом рисунке:

там, где включен GI, свет отобразился от сферы, принял ее красный цвет и осветил коробку изнутри.

Применение GI выводит освещение сцен на более совершенный уровень, тем более что в mental ray есть источники света, которые не генерируют прямое освещение, а только фотоны GI.

Включается алгоритм GI для всей сцены в настройках рендера (Render Setup) закладка Indirect Illumination (непрямое освещение) — галка Enable (включить):

Настройки GI:

Multiplier — общий множитель яркости эффекта и цвет фильтра.

Maximum Num Photons per Sample — качественная характеристика — количество фотонов для подсчета в семпле — уменьшение ведет к появлению шума.

Maximum Sampling Radius — радиус площадки сбора фотонов, очень часто путают с радиусом фотона — в mental ray фотоны не имеют радиуса, параметр от которого напрямую зависит качество освещение, изменение настройки только этого показателя, как правило не приводит к прямому улучшению качества (подробности в практической части)

Merge Nearby Photons — качественная характеристика — алгоритм объединения фотонов — задается расстояние, на котором происходит объединение нескольких фотонов в один — включение параметра может привести к ухудшению качества, но экономии памяти — актуально включать, когда мы увеличением количества фотонов пытаемся поднять качество картинки в одной проблемной области, а при этом остальные области не нуждаются в таком количестве.

Optimize for Final Gather — при использовании GI совместно с Final Gather (далее FG) оптимизирует вычисление совместно освещенных участков. Работает как дополнительный алгоритм и занимает немного больше времени при рендере.

Поле — Light Properties:

Average GI Photon per Light — количество фотонов, излучаемое источником света. Как правило, изменение этого параметра без изменения радиуса семпла к ощутимым положительным результатам не приводит (подробности в практической части).

Decay — параметр затухания фотонов, физически корректное значение = 2 (согласно квадрату расстояния) если вы используете физически корректное освещение, не меняйте значение, для художественных целей интересно уменьшать значение совместно с уменьшением энергии ИС.

Параметры в Trace Depth указывают количество отражений и преломлении, которые произойдут с фотоном, прежде чем он пропадет, желательно максимальную глубину установить на 5, а не 10 по умолчанию — это сэкономит время, а результат практически не измениться.

Итак, это все что нам надо знать по теоретической части по GI.

Давайте смоделируем помещение и будем настраивать (а иногда и бороться) с глобальным освещением.

Часть вторая — практика

Итак, у нас есть сцена, которую мы хотим осветить. Я сделал небольшое помещение:

основной поток солнечного света будет падать из отверстия в потолке (сейчас там темная дырка), освещаться все будет системой дневного света, солнце практически в зените. В результате у основания колонны должно быть яркое пятно от прямой иллюминации (прямых солнечных лучей), а все остальное будет освещаться непрямой иллюминацией созданной этим светлым пятном и частично светом небосвода, что смог попасть через верхнее отверстие.

Включаю солнце, настраиваю экспозицию и сразу вижу первую проблему GI.

Все помещение в бежевых тонах! Почему?

Солнечный свет (прямой) осветил пятно на полу, который у меня покрыт материалом A&D (под полированное дерево) коричневых тонов, фотоны непрямой иллюминации приняли оттенок материала и полетели освещать внутренности помещения, окрашивая все в бежевое. В принципе на этой картинке еще все более менее терпимо, но покроем пол синей плиткой (тоже A&D):

скажите жуть? Нет, это тоже еще терпимо, а вот, возьмем материал из набора ProMaterials — Пластик, тоже синий:

вот это уже ближе к жути!

Моделил я в метрической системе, теоретически расчет GI и FG должен проходить корректно. Может я не прав, но в реальном мире нет такого сильного переноса цвета от ярких поверхностей, если Солнце освещает красный ковер в моей комнате (и такое бывает в нашем хмуром городе Питере), то комната не погружается в багровые тона.

Что-то тут разработчики упустили, либо считают, что мы сами должны позаботиться об этом эффекте.

Давайте позаботимся и исправим данное недоразумение. Я опишу три способа — два частных случая и один кардинальный.

Вернемся к помещению с деревянным полом (рис № 2)

Первый способ состоит в подборе фильтра на GI ну и соответственно поставим его же на FG.

Чтобы компенсировать желто-бежевый цвет нужен светло-голубой фильтр, его и поставим (правда на GI и FG пришлось поставить немного разные фильтры, но кто сказал что будет легко):

делаем рендеринг:

явно с бежевым цветом справились. В чем два минуса этого способа?

Первое это подбор цвета фильтра (тем более что их два) и второе это то, что так мы можем компенсировать всего один цвет. Что делать если у меня половина пола красная, а вторая зеленая? В этом случае фильтр не поможет.

Второй способ. Давайте подумаем, почему происходит такая сильная окраска фотонов. Может я ошибаюсь, но по-моему, диффузный цвет из шейдера поверхности без изменений переноситься в шейдер фотонов, либо недостаточно ослабляется (это конечно касается предустановленных материалов, при работе с материалом mental ray, мы сами настраиваем этот шейдер). Давайте сменим шейдер. Открываем закладку «mental ray Connection» в свойствах материала и снимаем блокировку (замочек) с шейдера фотонов:

и диффузную составляющую цвета настаиваем по своему желанию:

это именно тот цвет, который будут приобретать фотоны GI при столкновении с материалом, он должен быть более блеклым, чем диффузный цвет самого материала, ну и соответственно чем он темнее, тем меньше эффект от освещения GI с этого материала.

Изменяем и рендерим:

У этого свойства тоже есть пара недостатков. Первое это то, что алгоритм FG все равно сделает свое черное дело (или бежевое в нашем случае), а втрое это то, что у предустановленных материалов группы ProMaterials невозможно сменить шейдер фотонов.

Итак, третий способ.

Он основан на работе с картами фотонов, а заодно и с картой FG.

Сохраняем наш проект (на всякий случай, хотя можно потом обойтись и функцией отмены действия ctr+Z)

Делаем еще один материал бледно серенького цвета, с минимальным отражением и полностью непрозрачным (я воспользовался материалом для покраски стен, что в принципе и советую):

Обратите внимание, я активировал опцию Ambient Occlusion, пока просто там ставим галку, подробности будут ниже.

Выделяем все объекты сцены и назначаем им этот материал (не бойтесь, мы же сохранили нормальную сцену)

Сцена приобрела следующий вид:

серо, хмуро, но нам так нужно.

Теперь заходим в настройки непрямой иллюминации

Для начало сохраним карту FG. Раздел Final Gather Map, включаем галку — «Read/Write File», потом жмем по кнопке с точками и указываем имя и место, куда сохраниться карта:

после чего жмем кнопку «Generate FG Map File Now» и ждем процесс генерации.

Внимание — если это финальный рендер, установите нормальные параметры качества, тем более что ждать генерацию FG вы будете только сейчас, в дальнейшем на это больше тратиться время не будет!!! Все будет браться из сохраненной карты.

Аналогично делаем для GI:

ставим галку, указываем имя файла и жмем на генерацию.

Обе карты сохранены, теперь грузим сохраненную сцену с нормальными материалами, или делаем отмену действий.

Опять ставим галки в Read/Write File на обоих алгоритмах (или проверяем, что они стоят если отменяли действие)

Проверяем, что указан наш сохраненный файл и в алгоритме для FG «замораживаем» карту нажав на «замочек»:

теперь смело жмем кнопку РЕНДЕР, замечаем что нет процесса генерирования фотонов и FG:

и наблюдаем приемлемый результат переноса цвета фотонами.

Многие сейчас могут возмутиться:

«А как же сама концепция переноса цвета материала фотонами!!! мы ее убили на корню!!! а люди писали алгоритмы, работали!!!»

Во-первых — ничего и не убили, кто мешает назначать всем материалам один серый/белый цвет, а пол можно сделать немного желтоватым 🙂

А во-вторых, давайте обратимся к физике, как происходит процесс передачи цвета, точнее отражения спектра.

В mental ray подразумевается, что он сразу смешивается (либо полностью либо в ослабленном виде — точно не знаю это нужно изучать программу шейдера)

А в реальном мире окрашивание происходит из-за попадания света в толщу материалов и возвращения из нее уже с отфильтрованным спектром, даже самые «непрозрачные материалы» имеют прозрачность на срезе очень маленькой толщины, но основная масса света отражается от полированной поверхности сразу, не проникая во внутрь и чем плотнее материал, тем больше.

поэтому камни будут отражать в основном белый цвет (цвет источника точнее) металлы немного его подкрашивать, пластики еще больше смешивать со своим цветом, ну а стекло. и так понятно.. там больше каустика, кроме того на цвет отражение еще влияет качество полировки, шероховатые поверхности больше окрасят отраженный свет, полированные меньше.

Пока плотность материала мы в Максе задавать не можем, а в предустановленных материалах она видно работает не так хорошо, как нам хочется. Поэтому придется имитировать GI описанными выше способами, либо для большей реальности можно включить эффект каустики (это и есть черная стрелка на рисунке, мы привыкли считать что каустика это только у стеклянных объектов, а это еще и зеркальные блики) либо пользоваться материалами mental ray на основе подслойного рассеивания — группа SSS.

Теперь присмотримся ко второй проблеме.

На рисунке номер 7 стена и колонны как бы сливаются, точнее на них теряется объем — картинка замылена. Корень проблемы в некачественном освещении фотонами GI. Прямой свет от ИС дает ярко выраженные тени, подчеркивая объем элементов сцены. С фотонами немного сложнее — они не дают теней, тени получаются на тех местах, где меньше всего попало фотонов, соответственно, чем меньше фотонов (и больше площадки приема фотонов — семплы) тем меньше контрастность.

Возьмем, например помещение, которое освещается только непрямой иллюминацией и в нем установлена конструкция с неровными поверхностями, я сделал что-то вроде лестниц:

и сделаем рендер, включив GI, но не меняя количества фотонов:

желтым я пометил места, где явно выражена обсуждаемая проблема. Согласитесь неприятная ситуация. Напрашивается вывод — увеличить количество фотонов и уменьшить радиус семпла, но это сильно увеличивает время обсчета, после чего мы заметим еще пару тройку мест, где опять слабые тени и процесс увеличения количества фотонов будет бесконечным, пока компьютер не откажется работать. Сразу вспоминается куча анекдотичных ситуаций, про качество и количество, на основании которых можно интерпретировать анекдот про графику:

Сидят вечером три работника в сфере CG, и обсуждают свои проекты.

Первый говорит:

Второй отвечает:

— Тоже все закончил, но не хватает мощности компа, доставлю память и закончу проект.

Сидят жалуются на быстродействие техники, а потом спрашивают третьего:

— А ты чего молчишь? как ты борешься со сложными обсчетами?

— А я использую Ambient Occlusion! Все сдал и завтра в отпуск.

Давайте и мы не будем решать проблему экстенсивно, а воспользуемся имитацией глобального освещения на материале.

Если используются материалы группы ProMaterials, то в них есть опция Special Effects, в которой и можно включить Ambient Occlusion

Параметр samples это качество просчета — чем больше, тем лучше.

Параметр Max Distance один из основных — это дистанция, с которой происходит учет рядом стоящей геометрии для формирования эффекта глобального освещения (со всех сторон). Если мы хотим показать эффект явно, то тут нужно установить расстояние до соседнего объекта, а если просто хотим подчеркнуть геометрию объектов (как в нашем случае) достаточно от 10см до полуметра. Ниже параметры смешивания и размытия, нам сейчас они не очень нужны, так как функция АО второстепенна.

Если используется материал не из группы ProMaterials, то придется диффузный цвет смешивать с шейдером АО, желательно по карте Falloff. А в некоторых материалах и материальных шейдерах есть слот Ambient, в который и нужно установить шейдер Ambient/Reflective Occlusion и настроить дистанцию:

ни в коем случае не оставляете дистанцию по умолчанию (равна 0) для закрытых помещений, если параметр нулевой, то просчет материала происходит с максимального расстояния (с фона сцены) и с учетом стен помещения вы получите полностью затемненный материал. Параметр Samples, аналогично — качество. Остальные параметры в настройке для нашего случая не нуждаются.

Итак, добавляем Ambient Occlusion, который работает очень быстро и не трогаем количество фотонов:

согласитесь есть разница! Учитывая, что рендериг по времени почти не увеличился.

Перейдем к третей и четвертой проблеме, они взаимосвязаны.

Присмотритесь к рисунку (№ 8) у верхнего отверстия на потолке, если присмотреться есть круглое светлое пятно.

Для выявления этого эффекта я прорублю два окна и немного испорчу потолок у помещения:

Первое обозначено красной стрелкой — это засветленное пятно, сейчас мы воочию видим семпл сбора фотонов, который светлее обычного фона. Кардинальное решение проблемы будет чуть ниже, а сейчас частный случай:

На одну из колонн у окна я поставил материал Raytrace. Вообще-то mental ray поддерживает визуализацию стандартных материалов 3D Max, настраивая поверхность этого материала я не трогал шейдер фотонов, а он оказывается настроен не корректно! Поэтому от колонны отразился несбалансированный поток фотонов, который и принялся семплом, создав площадку, ярче фона.

Вывод — желательно пользоваться материалами mental ray, а если у вас есть любимый и настроенный старый материал, позаботьтесь о настройке шейдера фотонов как мы делали выше в обсуждении первой проблемы. Но это частный случай. Общее конечно в настройке семплов и количества фотонов.

Посмотрите на желтую стрелку, такое ощущение что у меня потолок над окнами не подогнан к стенам (или наоборот), на самом деле все там в порядке, иначе бы светило было по всему периметру стыка. Дело в том что я продлил потолок на улицу и получил эффект с которым мы часто сталкиваемся при визуализации интерьеров освещенных ярким светом.

Разберем эффект на самом частом и явном примере. Такие пятна как правило появляются под подоконниками, где должно быть по умолчанию темно, а mental почему то там ставит такие пятна. Вот схемка их образования:

черный круг это семпл сбора фотонов. Программа визуализатор, в видимую часть стены ставит семпл сбора фотонов, центр которого находиться под подоконником и соответственно почти весь он в тени. Но маленькая его часть вылезает в освещенную часть, а там очень ярко и эта «маленькая часть», собирает очень много фотонов, в результате среднее арифметическое фотонов для темного места велико, а для светлого места мало. Семпл неделимая единица, поэтому визуализатор считает освещение в этом месте не корректно.

Выход только в уменьшении радиуса семпла и увеличении количество фотонов. По умолчанию размер семпла одна десятая размера сцены, а в нашем случае его нужно сделать по высоте подоконника.

Оптимальный расчет можно сделать так:

Размер семпла (Maximum Sampling Radius) = Y

Количество фотонов (Average GI Photons per Lihgt) = начальное значение умноженное на X деленное на Y (у меня это 20000*40 = 800000)

Выше параметры ставить бесполезно — это ничего не даст — только время потратим.

(любители геометрии сейчас могут возмутиться — почему мы делим на 40, а не на 2 в 40-ой степени? Ведь площадь уменьшается согласно квадрату!!! Все правильно мы делаем, ведь семплы ставятся пересекаясь и накладываясь! А не рядышком и воздействие каждого фотона уменьшается на корень из 2)

в моей сцене получилось 400000 фотонов, плюс еще некоторая настройка окружения:

В итоге время рендера вместе с генерацией карт освещения на процессоре 2х2Ггц — 4 минуты 31 секунда (148 тыс полигонов — деревце за окном прибавило)

Согласитесь это лучше чем генерировать часами миллионы фотонов и получать минимальные результаты.

В конце урока оговорюсь опять — все это результаты собственного опыта и расчетов и я не претендую на сто процентную правильность.

На этом уроки по освещению заканчиваю.

This entry was posted on Апрель 20, 2009 at 8:24 дп and is filed under Без рубрики. You can follow any responses to this entry through the feed. You can , or from your own site.

Создаем объемный свет в Ментал Рэй используя 3д Макс.

Первый шаг. Установка Mental Ray Renderer.

Сначала необходимо установить Mental Ray в наш редактор. Делается это следующим образом, открываем Rendering (в главном меню) > Render Setup... > Вкладку Common > Стек Assign Renderer > Production > mental ray Renderer. Все теперь базовый рендер Scanline заменен на Mental Ray.

Второй шаг. Геометрия для рендера.

Объемный свет в пустой сцене смотреться не будет, необходимо создать простенькую заготовку. Пусть, это будет макет дома с небольшими окнами. Начнем с базового примитива Box, откройте Create panel > Geometry > Standard Primitives > и выбираем Box. Теперь мы можем задать ему следующие параметры:

Третий шаг. Создадим окна.

Чтобы объемный свет попал в наш дом, необходимы окна! Теперь добавим модификаторы к объекту Box. Следуем по пути Modify panel > Modifier List > Object-Space Modifiers > тут активируйте Edit Poly. В окне Right можно активировать редактирование на уровне полигонов, сделайте это и удалите два полигона на нашем доме, это и будут окна.

Самое время активировать изменение геометрии на уровне vertex, изменим немного наш дом, сделав окна более низкими и широкими. Можете сделать как у нас на картинке или поэкспериментировать самостоятельно.

Фактически геометрия готова, осталось перевернуть нормали, это делается следующим образом:

1) Активируем полигональный режим.

2) Выделяем все полигоны по горячим клавишам CTRL + А.

3) Открываем modify panel, там ищем стек Edit Polygons и нажимаем на кнопку Flip.

После переворачивания нормалей, внешне наше строение стало черным, но это нормально, ибо рабочей областью у нас будет внутреннее помещение.

Четвертый шаг. Добавим камеру.

Теперь необходимо добавить на сцену главную камеру. Откройте Create panel > Cameras > Target, устанавливайте камеру. Лучше всего устанавливать камеру в окне вида сверху, однако можете использовать для этого любое окно. Вам необходимо повернуть камеру так, чтобы были видны окна.

Также камеру необходимо настроить, установите параметр Lens на 20мм. Осталось сменить вид на картинку из камеры, просто переходим в окно перспективы и нажимаем на клавишу С.

Пятый шаг. Работа с материалами.

Нам необходимо приписать нужные материалы, для этого открываем Material Editor, достаточно нажать М на клавиатуре. Перед нами будет список материалов, советуем сразу научиться их точно именовать, например, назовите его warehouse. Пока у вас материалов мало, это не очень существенно, но затем, когда материалов будет 20-30, вы банально запутаетесь.

  1. Первым делом нажимаем Get Material либо Standard, в открывшемся списке выбираем материал Arch & Design (mi).
  2. Теперь активируем склад, выбрав его в окне проекции и применив к нему наш материал.
  3. Скорректируйте параметр Reflectivity, установив его на 0. Ведь, блеск в нашем доме неуместен.

Можно добавить bump для более реалистичного отображения.

  1. В свойствах материала ищем Bump и в свитке Standard устанавливаем параметр Composite.
  2. Добавим слой, кнопка находится недалеко от Total layers. Обычно первым слоем (Layers 1), ставят базовую карту Smoke. Однако необходимо поправить параметры:

# Iterations: 20

Color #1 – черный

Color #2 – темно серый по RGB 50, 50, 50

  1. Добавим второй слой с картой Speckle, также исправим параметры:

Color #1 – светло серый по RGB 180, 180, 180

Color #2 – черный

Теперь необходимо настроить карту Diffuse, пройдите по пути Maps > Standard > Bitmap > concrete-texture-high-resolution.jpg.

Фактически основной объем сделан, можно создавать рендер и наслаждаться результатом. Пока он промежуточный, но у вам должно получиться как на картинке.

Шестой шаг. Настраиваем освещение.

Пора добавить свет в наше строение. Для этого необходимо открыть mr Area Spot, он расположен по адресу Create panel > Lights > Standard > mr Area Spot. Создавайте свет в окне Front, так его лучше позиционировать с той точки, чтобы он проходил в наши окна. Установив свет, добьемся лучших результатов правкой следующих параметров:

В свите Spotlight Parameters установим Hotspot/Beam: 24 и Falloff/Field: 26.

В свитке General Parameters установим Shadows: On (Ray Tracted Shadows).

Можно сделать еще один промежуточный рендер.

Седьмой шаг. Создание окружения.

Пора приступать к созданию окружения. Необходимо открыть Rendering > Environment и перейти в раздел background:

  1. Надимаем на "None", в выпадающем меню активируем карту Glow.
  2. Нажимаем М, открывая редактор материалов, перетаскиваем туда нашу карту Glow. Для перетаскивания зажимаем и держим левую клавишу мыши. Используем пустой слот, в появившемся диалоговом окне выбираем Instance. Так мы свяжем карты.

Осталось настроить цвет, для Glow выберем чисто белый, установим параметр яркости (Brightness) на уровень 4, однако вы сами можете по ситуации корректировать яркость.

Можно делать очередной промежуточный рендер. Если все выполнено как надо, то результат будет таков.

Как видно, постепенно наша сцена становится все более интересной. Однако необходимо еще многое сделать. Для начала применим шейдеры к камере, идем по пути Renderer > стек Camera Effects > Camera Shaders > Output > Glare. Иными словами мы применили Camera Shader на наше свечение Glare.

При желании, можете сделать еще один рендер, для того, чтобы зафиксировать изменения.

Кстати, если хотите получить более интенсивное свечение, то просто свяжите карту Glare со слотом в редакторе материалов (М) и увеличивайте параметр Spread.

Восьмой шаг. Добавляем стороннее освещение.

Сейчас единственный источник света на сцене это наши окна. Необходимо добавить стороннего освещения, для лучшей видимости сцены. Необходимо пройти по пути Create panel > Lights > Standard > Skylight, создав свет. Сразу же меняем параметры в Make a selection > Modify panel, нас интересует Multiplier, его лучше установить на 1,5, впрочем, небольшие отхождения от этого значения возможны, пробуйте!

Теперь идем в Create panel > Lights > Photometric > mr Sky Portal и добавляем еще несколько светильников. Тут возможны некоторые сложности, необходимо сделать наши светильники точно под размер окон и повернуть их светом внутрь помещения. Ах, и не забудьте сделать Multiplier 1,5 или столько, сколько вы и сделали свету Skylight.

Как видите, свет станет более естественным, он будет освещать окружающее окно пространство, а именно, часть потолка и стены.

И, несмотря на все, в помещении все еще слишком темно. Необходимо это исправить, добавив еще света, пройдите по пути Rendering > Render setup... > вкладка Indirect Illumination > стек Final Gather. Тут необходимо поставить следующие параметры Multiplier на 2, а Diffuse Bounces на 5. Можно делать очередной промежуточный рендер, для оценки результатов. Напомним, если вас не устраивает интенсивность или яркость, можете смело менять, подстраивая все под свое виденье.

Как видим, стало еще светлее, уже вся сцена просматривается.

Девятый шаг. Создаем объемный свет.

Собственно, наконец, мы подошли к теме нашего сегодняшнего урока. Все приготовления завершены, можно работать над объемным светом! Использовать будем эффект Volume Light, который входит в рендер. Активируем его по пути Rendering > Environment... > Atmosphere, теперь следуем такому порядку действий:

  1. Нажав на Add необходимо выбрать Volume light.
  2. Теперь нажимаем на Pick Light, и выбираем mr area spot, который мы настраивали ранее. На более сложных сценах, чтобы не искать светильник в списке объектов, достаточно нажать клавишу Н.
  3. Поиграем с плотностью света, установив параметр Density на 20.

Можно делать рендер и наслаждаться объемным светом, пока в предварительной версии.

Десятый шаг. Финальные настройки света в рендере Mental Ray

Необходимо провести финальную настройку всего нашего света. Вы можете это делать несколько иначе, ставя другие параметры или оставляя все как есть, но мы сделали это следующим образом. В Rendering > Render setup... > Indirect Illumination > Final Gather мы немного понизили Multiplier с 1,5 до 1,4. Однако это игры со светом, они индивидуальны, вы можете задать совершенно иные настройки.

Также необходимо улучшить качество рендера. Для этого идем в Rendering > Render setup... > Renderer > Sampling Quality и там выставляем:

Samples per pixel

Параметр Minimum на 4

Параметр Maximum на 64

Filter выбираем Type: Mitchell

Фактически все! Можно проводить финальный рендер, наслаждаясь отличной картинкой!

В данном уроке мы рассмотрим основные принципы настройки источников света для освещения интерьера и создания эффекта глобального освещения в Mental Ray. Также рассмотрим некоторые проблемы, которые могут возникнуть при освещении текстурированной сцены, и методы их решения.

Для выполнения урока нам потребуется сначала создать помещение.

В окне проекции Top создайте сплайн Rectangle . Выделите его и перейдите во вкладку Modify командной панели. Выберите из списка модификаторов модификатор Edit Spline . В свитке Selection нажмите на кнопку Spline (красная кривая такая), а затем в свитке Geometry нажмите на кнопку Outline и в окне Top немного сдвиньте сплайн наружу. Теперь снова из списка модификаторов выберите Extrude и выдавите из сплайна трехмерный объект подходящей высоты. Это будут стены.

Теперь сделайте из обычной плоскости пол и потолок.

Далее вырежем окно. Создайте Box . Расположите его в стене так, чтобы все углы торчали из стены. Выделите его и в раскрывающимся списке категории Geometry вкладки Create командной панели выберите строку Compound Objects . Щелкните по кнопке Boolean , затем, в появившимся свитке, щелкните по кнопке Pick Operand B . Выберите в любом окне объект стену. Задайте тип операции Б-А. Окно готово как, собственно, и сама сцена. Хотя нет! Добавьте в помещение еще парочку объектов для красоты. Это будет что-то вроде мебели. Наложите на стены потолок и все остальное обычный стандартный серый материал.

Расположите внутри помещения камеру и сфокусируйте ее должным образом.

Направьте в окно источник света mr Area Spot .


Настройте источник света. При работе с фотонами огромное значение имеет параметр Hotspot в свитке Spotlights Parameters источника света. Эти параметры надо как можно более точно настраивать по размерам окна через которое в комнату поступает свет, чтобы избежать потери фотонов, максимальное количество которых зависит от размера ОЗУ вашего ПК. Так как окно прямоугольной формы, значит нужно указать форму Rectangle и подстроить конус под размер окна. Чтобы легче было изменить направление и конус, переключитесь в одном из окон на вид из источника света. В свитке Area Light Parameters установите флажок On и укажите тип рассеянного света Disc с радиусом рассеивания 40. Хотя, можно установить и гораздо большее значение. Мне никогда не приходилось наблюдать резкого очертания оконного проёма на тени, когда в окно не попадает солнечный свет. Из этого можно сделать выводы. Если вы хотите чтобы в вашей сцене солнечные лучи падали в окно, то установка размытых теней будет большой ошибкой. Иная ситуации, когда свет небесный.

С созданием сцены вроде все. Отправьте сцену в просчет. Темно неправда ли? Пришло время разобраться с глобальным освещением в Mental Ray. Открываем окно Render Scene , выбираем в качестве визуализатора Mental Ray . Переходим во вкладку Indirect illumination и в свитке Caustic and Global illumination в блоке GI ставим флажок Enable . Визуализируйте сцену. Практически ничего не изменилось. Без точной настройки не обойтись.

Итак, приступим к настройке освещения нашей тестовой сцены. Установите значение Maximum Sampling Radius равное 4 . Значение Radius — это радиус поиска фотонов. Именно радиус поиска фотонов, а не размер фотона! Фотоны с точки зрения компьютерной графики размера не имеют. Отсутствие галочки Radius означает, что радиус поиска фотонов равен примерно 110 части сцены. Значение Maximum Num. Photons — это количество семплов для расчета освещенности точки. Значение Average GI Photons установите равным 10 000 . Как вы уже поняли, значение GI Photons определяет количество фотонов у источников света, именно это количество фотонов сохраняется в фотонной карте. Значение Decay определяет затухание с расстоянием, физически корректным считается значение 2. Значение Global Energy Multiplier — это своего рода регулятор, с помощью которого можно управлять общей освещенностью сцены.

Значение Trace Depth задает уровень отражения и преломления поверхностей в сцене. Photon Map — установка фотонной карты. Обратите внимание, что некоторые значения параметров в результате могут отличаться в зависимости от системы исчисления координат. Это касается всех параметров, которые задают размеры, расстояния, радиус и т.п. Мы рассматривает все значения в Inches, а не в миллиметрах или метрах и др.

Снова визуализируйте сцену.


Яркие световые пятна радиусом 4 говорят о том, что фотоны генерируются, что радиус поиска фотонов равен 4 inches, а наличие больших неосвещенных черных областей в сцене говорит о недостаточном количестве фотонов для данной сцены. Меняем количество фотонов с 10000 на 500000.


Уже лучше, но все еще темно и присутствует шум. Есть два пути избавиться от шума и сделать более интенсивным освещение. Чтобы уменьшить шум можно еще более увеличить значение Average GI Photons, но это приведет к увеличению времени рендеринга, а отличного результата вы так и не добьетесь. Значения Average GI Photons ограничиваются объемом памяти ПК и вы не сможете использовать очень большие значения. Второй вариант — увеличить радиус поиска фотонов, что приведет к сглаживанию картинки. Но тогда вторичные тени будут просчитаны безобразно, что будет выглядеть совсем не естественно. Оптимальной вариант подогнать эти значения так, чтобы и шума не было, и тени были нормальными. Вот уже неплохое изображение.


Здесь я использовал значения Average GI Photons = 1500000, Maximum Sampling Radius = 13, а Global Energy Multiplier = 6500. На самом деле картинка все же ужасна. Появились засветы из-за слишком высокого значения Multiplier. Такое можно часто встретить в галереях, когда на изображениях интерьера засвечены подоконники, оконные рамы и, иногда, потолки. Это неправильно!

Несмотря на то, что метод фотонных карт дает наиболее физически точные результаты освещения сцен, количество фотонов для получения качественного освещения при минимальном радиусе поиска фотонов должно быть слишком большим. Современные ПК и 32-битная операционная система не позволят просчитать такое количество фотонов.

Наиболее реалистичное грамотное освещение дает в интерьерах совместное применение фотонов и Final Gather . Что же представляет собой Final Gather ? Над точкой строится полусфера единичного радиуса и через поверхность полусферы в случайных направлениях испускаются лучи. Чем больше таких лучей, тем точнее просчет и меньше шумов. На практике количество лучей — это количество семплов в Final Gather . Для каждого луча находится пересечение с ближайшей поверхностью. Луч обрабатывается. Дальнейшая трассировка луча не ведется. Глубина трассировки лучей Final Gather всегда равна единице. Использовать только один Final Gather рекомендую в сценах, с использованием HDRI-карт в глобальном окружении или экстерьерах.

И так включаем Final Gather и устанавливаем значения как на рисунке. Но прежде верните значения Average GI Photons = 10000.

Флажок Preview служит для быстрого просчета в низком качестве. Визуализируйте сцену.


Как можно видеть есть шум, но не такой, как при отключенном Final Gather. Достаточно увеличить значение Average GI Photons до 200000 и Samples в Final Gather с 50 на 500 , и получится весьма приемлемая картинка.


Наложите текстуры. Я использовал стандартные материалы и максовские битовые карты (*. jpg). Визуализируйте сцену вновь.


Не очень приятное зрелище? Вот! Теперь самое время поговорить о проблемах, которые могут возникнуть при использовании Mental Ray GI. Как Вы уже успели заметить, в сцене довольно сильный перенос цвета со стен и пола на потолок, да и вообще друг на друга. Этот эффект называется . Бороться с этим можно разными способами. Например, контролируя color bleeding с помощью фотонных шейдеров. Но наиболее оптимальным вариантом считаю следующий. Просчитываем карту фотонов и Final Gather в сцене с серым материалом, как на рисунке 9 и сохраняем в файл. Далее назначаем объектам сцены нужные материалы и рендерим загружая фотоны и Final Gather из файла. Честно говоря, мне не понятно, почему разработчики не сделали опцию настройки color bleeding как, например, в рендере finalRender.

Доведем дело до конца. Вот картинка, визуализированная таким методом.


Ради примера я закинул в сцену пару моделей стульев с ковром и одну стенку. Я не дизайнер интерьера и это не конкурсная работа, так что прошу меня не критиковать за столь непонятную попытку расстановки мебели.


Хорошая картинка без засвечивания на окне и с равномерным освещением и всего с одним источником света. Кто-то может возразить, что сцена темновата. Стоп! А где вы видели в реальности хорошо освещенную комнату в такое маленькое окошко? Не надо переусердствовать с интенсивностью света. Отсюда и засвечивания появляются, и сцена выглядит нереалистично. Хорошо освещенная сцена – это, когда не ярко и без засветок, когда все объекты и углы в поле зрении камеры хорошо различимы. Чтобы грамотно подсветить сцену используйте источник света SkyLight.

Напоследок хочу дать несколько советов, которые помогут избежать ошибок в вашей работе с Mental Ray.

1. Никогда не делайте стен, полов и потолков с нулевой толщиной! Mental Ray просто проигнорирует повернутые нормали стен и будет пропускать свет в помещение так, как будто это открытое пространство. Это также справедливо по отношению и к другим визуализаторам.

2. Используйте источник света SkyLight для подсветки. Чтобы добавить освещенности, реализма и подсветить места оконных проемов, находящихся в области тени SkyLight подходит лучше всего. В больших интерьерах со множеством окон вместо скайлайта в оконных проемах можно использовать фотометрический источник света — TargetArea.

3. Рекомендую во всех внешних визуализаторах использовать только "родные" материалы. К Mental Ray это относится в меньшей степени потому, что и стандартные и рейтресер и архитектурные материалы работают в Mental Ray достаточно неплохо. Но, несмотря на это, только использование "родных" материалов, к которым относятся DGS material, mental ray, Glass (physics_phen) а также Lume-шейдеры, дает наиболее физически точные корректные результаты. При использовании (в интерьерных сценах с использованием фотонных карт) mental ray материала в слоте Photon надо обязательно использовать фотонный шейдер. При использовании в слоте Surface - DGS materiala, в слоте Photon лучше использовать DGS material Photon. При использовании в слоте Surface - Lume-шейдеров, например, Metal(lume) в слоте Photon лучше использовать Photon Basic.

4. За просчетом фотонов, Final Gather и ходом просчета можно следить визуально, включив Mental Ray Message Window.

5. Настраивайте освещение в сцене, назначив всем объектам серый материал. Помните о том, что текстуры и материалы имеют свойство скрывать недостатки GI. И только после того, как найдете оптимальные настройки GI в сцене, назначайте материалы объектам, подстраивая материалы под освещение, а не наоборот. Помните также о том, что в Mental Ray фотонные шейдеры оказывают прямое влияние на освещение в сцене и если вы хотите, чтобы они не повлияли на общую освещенность, настроенную в сцене с серым материалом, выставляйте у фотонных шейдеров те же параметры, которые были у них при настройке освещения в сцене. Теперь поговорим о радиусах в Final Gather. Max Radius — это расстояние между точками, для которых вычисляется GI (глобальное освещение). Чем меньше расстояние между точками, тем точнее просчет и тем больше времени потребуется. Min Radius — это расстояние, используемое в интерполяциях и экстраполяциях освещенности промежуточных точек. На практике для получения нормального качества GI Min Radius должен быть в 10 раз меньше Max Radius. Увеличение значений радиусов приводят к снижению качества вторичных теней, уменьшение — к более точному просчету GI и, как следствие, увеличению времени просчета. Чем меньше радиусы, тем большее количество семплов приходиться выставлять в Final Gather. Количество семплов, необходимых для сглаживания, при вышеназванных значениях радиусов колеблется от 500 до 3000 в зависимости от сцены. Чем больше, тем лучше. Но не стоит сильно увлекаться увеличением этого значения, так как время просчета будет сильно расти.

Система освещения интерьеров в mental ray

Mental ray использует собственные источники света. Эти источники весьма разнообразны, но мы используем лишь те, которые позволяют удобно настроить мягкое освещение интерьера.

Окончательная мягкая картинка будет возможна лишь после настройки атмосферы. Ее мы выполним позже, после работы над источниками света. Сейчас наша задача - рассмотреть порядок работы с источниками света, применяемыми при работе с интерьерами.

Рассмотрим работу с ними на примере конкретного интерьера.

1. Запустите файл mr_svet.exe в папке Primeri_scenGiava_4 на компакт-диске. Это - самораспаковывающийся архив, который содержит все файлы, необходимые для открытия сцены. После запуска файла, нажмите кнопку "Извлечь ". После этого - запустите файл mr_svet.max, расположенный по адресу C: mr_Svet.

2. Перед вами - несложная сцена с уже знакомой комнатой. В ней присутствуют лишь стол и четыре стула, расположенные у окна. В комнате размещена съемочная камера. Чтобы попасть вовнутрь помещения, достаточно лишь включить камеру. Выделите окно проекций Perspective (Перспектива) и нажмите клавишу . Ракурс обзора установлен внутри помещения (рис. 4.53).

3. Сначала создадим общий источник, который позволит добавить в сцене освещение. Это будет источник солнечного света. Он позволит создать эффект падающих через окно лучей света. В первом разделе командной панели (Create ) выберите последний подраздел - Systems (Системы). Здесь нам понадобится инструмент создания системы Daylight (Дневной свет) (рис. 4.54). Выберите данный инструмент, затем наведите курсор в центр помещения в окне проекций Top (Вид сверху), зажмите кнопку мыши и переместите курсор в сторону, создавая схему компаса. Отпустите кнопку мыши и переместите курсор вверх - тем самым, создавая источник света.

4. В результате был добавлен источник света Daylight (Дневной свет). Его необходимо настроить. Выделите сам источник (не точку-цель в форме компаса) и перейдите к его параметрам во втором разделе командной панели. Здесь нам, прежде всего, понадобятся параметры свитка Daylight Parameters (Параметры дневного света) (рис. 4.55).

5. Раскройте список вариантов типа освещения Sunlight (Солнечный свет), расположенный в верхней части свитка. Значение Standard (Стандартный) здесь необходимо заменить на mr Sun (Солнце).

6. В нижней части свитка необходимо заменить значение Standard (Стандартный) параметра Skylight (Свет неба) на mr Sky (Небо). На появившийся вопрос ответьте "Да".

7. Также в этом свитке необходимо выбрать пункт Manual (Ручной) в группе параметров Position (Позиция). Это позволит вручную изменять позицию источника света в пространстве. Иначе его позиция могла бы быть задана методом установки даты, времени и локации интерьера. В нашем случае удобнее будет перемещать источник света вручную. После настройки всех перечисленных параметров, свиток должен выглядеть, как на рис. 4.56.

8. Теперь надо правильно разместить источник по отношению к помещению. Необходимо, чтобы лучи света падали через окно наискосок. Для этого выделите источник света и разместите его по отношению к комнате примерно так, как показано на рис. 4.57. Установить его в конкретную точку можно при помощи окна точного ввода значений координат. Выделите источник, затем выберите манипулятор движения, щелкните по нему правой кнопкой мыши и задайте следующие значения координат: X = 420, Y = 600, Z = 400.

9. Если сейчас выполнить визуализацию внутри помещения, то комната останется совершенно черной, но на полу будет пятно света по форме оконного проема. Источник света Daylight (Дневной свет) позволяет лишь добавить свет в сцене. А вот правильно распределить свет можно при помощи дополнительного источника - mr Sky Portal (Портал света неба). Данный источник не освещает сцену сам, а лишь собирает и направляет свет от источника Daylight (Дневной свет).

10. В первом разделе командной панели (Create ) выберите третий подраздел - Lights (Источники света), затем в выпадающем меню типов объектов выберите вариант Photometric (Фотометрические). Здесь - перед нами инструмент создания источника mr Sky Portal (Портал света неба) (рис. 4.58).

11. Источник mr Sky Portal (Портал света неба) имеет форму плоскости, в одну сторону от которой испускается свет. Выберите данный инструмент, затем в окне проекций Top (Вид сверху) создайте данный источник (растянув его диагональ).

12. Перейдите к параметрам только что созданного источника. Здесь нам понадобятся параметры свитка mr Sky Portal Parameters (Параметры портала света неба) (рис. 4.59). В группе Dimensions (Измерения) задайте следующие значения: Length (Длина) - 200 см, Width (Ширина) - 200 см. Таким образом, вы сделали источник квадратной формы, площадью 4 квадратных метра.

13. Источник надо разместить внутри помещения, так чтобы он находился прямо над потолком. В окне проекций Front (Вид спереди) переместите источник вверх, под потолок. Поместить его в нужную точку можно также при помощи окна точного ввода значений координат. Задайте источнику позицию X = 250, Y = 200, Z = 260. Источник установлен в необходимую точку, но при этом может быть направлен в ненадлежащую сторону. Нам необходимо, чтобы он светил вниз, внутрь комнаты. На направление света указывает специальная стрелка, которая хорошо видна в окнах Front (Вид спереди) и Left (Вид слева). Если он светит наверх, то в параметрах данного источника, в самом низу свитка mr Sky Portal Parameters (Параметры портала света неба), установите галочку слева от надписи Flip Light Flux Direction (Обратить направление потока света). В результате - направление стрелки изменится. Теперь источник светит вовнутрь.

14. Перейдите к обзору сцены через съемочную камеру и выполните визуализацию (клавиша - для активации камеры в окне Perspective (Перспектива) и клавиши + - для запуска визуализации). Теперь процедура визуализации занимает гораздо больше времени. В результате - получится полутемный кадр, в котором пока лишь угадываются контуры мебели.

15. Оба необходимых источника установлены. Теперь необходимо лишь оперировать значениями интенсивности их освещения. Выделите созданный источник mr Sky Portal (Портал света неба) под потолком, перейдите к его параметрам и увеличьте значение параметра Multiplier (Усилитель) примерно до 25 единиц.

16. Выделите созданный в шаге 3 источник Daylight (Дневной свет) и перейдите к его параметрам. Здесь нам понадобится оперировать параметрами Multiplier (Усилитель) в свитках mr Sun Basic Parameters (Основные параметры солнца) и mr Sky Parameters (Параметры неба). Значения обоих параметров задайте равными 3.

17. Включите съемочную камеру для просмотра сцены и выполните визуализацию. Теперь в комнате достаточно света (рис. 4.60).

Таким образом, мы настроили освещение комнаты при помощи источников Daylight (Дневной свет) и mr Sky Portal Parameters (Параметры портала света неба). Уже очевидно, что источники света mental ray позволяют создавать гораздо более реалистичное освещение, чем стандартные. Однако картинку можно улучшать и дальше. Например - за счет добавления атмосферы.

Сохраните текущую сцену. Последующие действия по добавлению атмосферы мы будем производить в отношении нее же.

Подсказка.

Все вышеперечисленные настройки и значения параметров (в частности, интенсивности источников) - применялись для версии 3ds Max 2010. В более ранних версиях необходимые настройки могут отличаться. Если у вас получается слишком яркая картинка, или наоборот - слишком темная, самостоятельно исправляйте интенсивность света, работая с параметрами Multiplier (Усилитель) созданных источников.

Из книги Домашний архитектор. Подготовка к ремонту и строительству на компьютере автора Булат Виталий

Дизайн интерьеров К дизайну интерьеров в «3D Suite Мебельный салон v2.6» можно приступать после завершения разработки макетов шкафов или сразу после начала работы с программой (если вы уверены, что необходимая мебель есть в базе данных моделей шкафов).В любом случае после

Из книги Ландшафтный дизайн на компьютере автора Орлов Андрей Сергеевич

Создание освещения В библиотеке программы Landscaping and Deck Designer в папке Electrical (Электричество) собрана целая коллекция различных изображений, которые могут пригодиться при оформлении участка. Садовые светильники находятся в папке Street Lamps (Уличные лампы), которая вложена в

Из книги Введение в OpenGL автора Компьютеры Автор неизвестен -

Создание освещения Чтобы участок был красивым в темное время суток, чтобы использовать его с комфортом даже ночью, необходимо продумать и внести в план проекта осветительные приспособления. В библиотеке программы таких приспособлений достаточно – здесь есть внешние

Из книги 3ds Max 2008 для дизайна интерьеров автора Семак Рита

Модель освещения В OpenGL используется модель освещения Фонга, в соответствии с которой цвет точки определяется несколькими факторами: свойствами материала и текстуры, величиной нормали в этой точке, а также положением источника света и наблюдателя. Для корректного

Из книги Приемы создания интерьеров различных стилей автора Тимофеев С. М.

Фотометрические источники освещения Действие фотометрических источников света основано на реальных свойствах света, что дает возможность организовать физически точное освещение. Они способны почти идеально воспроизвести любой реальный источник света: от лампочки

Из книги Цифровая фотография. Трюки и эффекты автора Гурский Юрий Анатольевич

Композиция и стили в дизайне интерьеров Создание дизайна – непростое занятие. От идеи до готового интерьера – длинный и нелегкий путь. Главная задача, которую выполняет дизайнер, – разработка интерьера помещения, соответствующего индивидуальности хозяина, его

Из книги автора

Работа с mental ray О том, что такое визуализатор mental ray, а также о его особенностях, мы говорили ранее. Напомню лишь, что это - гораздо более сильный визуализатор, позволяющий создавать более реалистичные изображения за счет имитации атмосферы сцены.Визуализатор mental ray

Из книги автора

Включение mental ray Работа с визуализатором mental ray начинается еще на этапе текстурирования. Первый этап - моделирование - выполняется одинаково, независимо от того, каким визуализатором будет создавать конечный продукт. Уже на втором этапе - текстурировании - необходимо

Из книги автора

Текстуры mental ray Существует несколько типов текстур, которые хорошо подходят при работе с mental ray. В частности, тип Arch & Design (mi) очень удобен при создании большинства материалов, используемых при текстурировании интерьеров и архитектуры. Именно с ним мы и будем

Из книги автора

Настройки атмосферы в mental ray Под атмосферой в данном случае мы понимаем способность лучей света к отражению от поверхностей объектов и рассеиванию в пространстве. Это позволяет сделать картинку визуально гораздо более мягкой и реалистичной. Рассеянный свет смягчает

Из книги автора

Глава 5 Стили оформления интерьеров Богатство вариантов стилей оформления интерьеров поражает. Разрабатывая концепцию интерьера, первым делом необходимо выяснить - какой именно стиль наиболее предпочтителен в конкретном случае. Разумеется, опытный дизайнер по

Из книги автора

Визуализации интерьеров Здесь представлены некоторые образцы трехмерных интерьеров. Подобраны те визуализации, которые наглядно иллюстрируют некоторые стилевые и технические особенности создания интерьеров в 3ds Max.Этническое направление в интерьере, несомненно,

Из книги автора

Глава 6 Особенности создания интерьеров в стиле минимализм В предыдущих главах вы познакомились с основными приемами и способами создания моделей, создания и наложения текстур, визуализации сцены. Научились создавать модели помещений, применять в отношении них

Из книги автора

Глава 8 Особенности создания интерьеров в стиле кантри Стиль кантри сегодня достаточно распространен. В интерьерах кантри преобладает резное дерево, текстиль, разнообразные аксессуары, присутствует камин.В этой главе мы рассмотрим некоторые особенности, приемы и

Из книги автора

Глава 9 Особенности создания интерьеров в стилях хай-тек, техно Последняя группа стилей, которые мы разберем - хай-тек и техно. Создание интерьеров в этих стилях обычно сопровождается настройкой необычного футуристического освещения, неоновыми подцветками,

Из книги автора

Угол освещения Фронтальное освещениеВо всех руководствах по фотографии говорится, что, снимая при солнечном свете, лучше располагаться так, чтобы солнце находилось сзади фотографа и его лучи освещали передний план объекта. Это самые простые световые условия: сцена

Текущая страница: 25 (всего у книги 31 страниц) [доступный отрывок для чтения: 21 страниц]

Освещение и настройка источников света

Сцена полностью текстурирована, камеры для получения походящих визуализированных изображений интерьера установлены. Подошла очередь выстроить правильное освещение сцены и добавить определенные эффекты визуализации, с помощью которых изображения сцены станут более зрелищными и реалистичными.

Замечено, что только хорошо освещенное пространство позволяет получить определенное впечатление от выстроенной сцены. Обычно для начинающих правильная установка и настройка освещенности сцены представляет некоторые сложности, так как именно с помощью света для человека открывается окружающее пространство. Ведь цвета предметов, свойства поверхностей и все остальное, что человек видит в окружающем его мире, есть не что иное, как отражение от поверхности предмета света, направленного на нее под разными углами. Попадая на поверхность, свет рассеивается, и изменяется состав его частотного спектра (зависит от отражающих свойств предмета). Из вышесказанного следует вывод: с помощью правильной настройки текстурных качеств объектов и освещения можно как улучшить впечатление от посредственно построенной сцены, так и, наоборот, испортить качественно подготовленную визуализацию.

Физическое представление света

С точки зрения физики световое излучение характеризуется понятиями светового потока, силы света и освещенности. Световой поток задает энергию света, излученную за единицу времени, и измеряется в люменах (лм, lm). Световой поток, испускаемый в пределах заданной области пространства, называется силой света и измеряется в канделах (кд, cd). Характеристика силы света дает возможность сравнить источники с различным пространственным распределением света. Освещенность - это отношение светового потока к площади освещаемой поверхности, измеряется в люксах (лк, lx).

Помимо вышеперечисленных характеристик освещения для трехмерной графики очень важны цветовая температура и расположение источников света. Под цветовой температурой понимается физическая величина, характеризующая величину цвета и яркости источника света, измеряемая в кельвинах (К). Оттенки с температурой ниже 4000 К считаются теплыми (цвета от красного до желтого – цвет свечи, лампы накаливания и т. д.), а источники с цветовой температурой выше указанной – холодными. Лампы дневного света, стробоскопы являются примерами источников холодного освещения. С помощью цветовой температуры можно менять ощущение человека при просмотре сцены (подобный прием часто применяется в кино и фотографии).

Виды источников освещения в 3ds Max 2009

В прошлой версии в состав источников света был добавлен mr Sky Portal (Небесный портал Mental Ray). Данный осветитель упрощает настройку дневного освещения в интерьерных сценах, его функционирование напоминает освещение на основе HDRI-эффектов. Если учитывать источники света Mental Ray, то программа по умолчанию предоставляет двенадцать различных типов осветителей сцены и системы объектов Sunlight (Солнечный свет) и Daylight (Дневной свет). В ней существует несколько программно-аппаратных алгоритмов освещенности, у каждого из которых есть свои установки и настройки освещения.

Стандартные осветители – без учета отраженного света от поверхности объектов.

Фотометрические осветители – расчет глобальной освещенности и диффузное рассеяние.

Встроенный модуль внешнего рендеринга Mental Ray, имеющий свои объекты световых источников.

Кроме того, есть возможность подключения других модулей рендеринга, каждый из которых, как правило, предоставляет для использования свои осветители.

Начиная с шестой версии, в программе появился еще один способ освещения – при помощи HDRI (High Dynamic Range Image – изображение с расширенным динамическим диапазоном). Один из способов применения HDRI описан далее в этой главе.

В каждом конкретном случае выбор метода освещения определяется сравнением результатов применения нескольких методов, которые оцениваются по таким критериям, как фотореалистичность и время визуализации. Если, например, фотореалистичная визуализация сцены длится часов 5–6, то анимировать подобную сцену достаточно проблематично из-за слишком больших временных затрат. Зато в качестве эскиза интерьера изображение, полученное этим способом, будет наиболее подходящим. Однако четких критериев выбора того или иного способа все же нет. Несколько раз применив перечисленные способы и увидев разницу между ними, можно понять, какой метод настройки освещения сцены больше вам подходит в том или ином случае. Правда, в любом случае при применении любых методов установки освещения требуется достаточно тщательная настройка параметров, и, возможно, не сразу получится хороший результат.

Освещение по умолчанию

Если не включать в сцену каких-либо источников освещения, то программа 3ds Max 2009 автоматически устанавливает в сцену освещение по умолчанию. Оно представляет собой встроенные (всенаправленные) стандартные источники света с параметрами, не подлежащими настройке. Встроенных источников может быть один (по умолчанию) или два. Одиночный источник дает контрастный, не очень естественный свет (рис. 5.15). Два встроенных источника света располагаются: один в левом верхнем углу сцены спереди, а другой – сзади в правом нижнем углу. Изменить установки освещения по умолчанию можно командой меню Views → Viewport Configuration (Настроить → Конфигурация просмотра). Откроется окно с вкладками, из которых нужно выбрать Rendering Method (Метод визуализации) и в области Rendering Options (Параметры визуализации) изменить нужные установки. Освещение с помощью двух встроенных источников получается мягче и естественнее, чем одним. Данные источники не формируют тени от объектов, и визуализация с ними не выглядит естественно, но они позволяют увидеть расположение предметов в сцене. В предыдущей главе описывались упражнения, в которых визуализация производилась именно с использованием только освещения по умолчанию. Если в сцене установлен хотя бы один источник света, освещение по умолчанию автоматически выключается и в дальнейшем освещенность определяется только наличием и мощностью установленных осветителей.

Рис. 5.15. Освещение сцены по умолчанию одним источником


Если в настройках освещения по умолчанию не установить флажок Default Lighting (Освещение по умолчанию), то в видовых окнах сцена будет освещена установленными источниками, что не всегда хорошо для четкой видимости объектов. Поэтому флажок лучше установить еще до начала работы с источниками освещения.

Кроме того, освещенность сцены зависит также от окружающей подсветки, не имеющей источника и управляемой изменением общего уровня освещенности по трем цветовым параметрам. Настройка осуществляется с помощью команды меню Rendering → Environment (Визуализация → Окружение). Открывается диалоговое окно с двумя вкладками, из которых нужно выбрать Environment (Окружение) (рис. 5.16). Таким образом, устанавливается как уровень влияния окружающей подсветки на освещенность сцены, так и ее цвет, а также возможность использования изображения в качестве карты окружения. От использования в сцене большого уровня общей освещенности (Ambient) лучше отказаться, а увеличивать ее стоит только при большой необходимости и только на малую величину. Это необходимо, потому что общая освещенность делает предметы плоскими, стирает их грани.

Рис. 5.16. Параметры настройки окружения сцены

Стандартные осветители

Стандартных осветителей в программе семь, не считая осветителей Mental Ray (рис. 5.17). Набор стандартных источников является достаточным для имитации относительно реалистичного освещения как искусственных, так и естественных источников света.

Рис. 5.17. Стандартные источники освещения 3ds Max 2009


Теперь о каждом источнике подробнее.

Источник Sunlight (Свет солнца) предназначен для создания и управления имитацией солнечного света в сцене. Этот объект можно найти, щелкнув на кнопке Systems (Система) вкладки Create (Создать) командной панели. При его использовании создается направленный источник света, освещающий сцену под углом имитации солнечных лучей, падающих на поверхность Земли в заданных географических координатах и в заданное время. Является наследием более старых версий программы и остался в 3ds Max 2009 в основном для совместимости проектов. Начиная с пятой версии, его заменяет улучшенная система Daylight (Дневной свет).

Omni (Всенаправленный источник) – испускает световые лучи во всех направлениях из одной точки равномерно. По своим физическим свойствам может имитировать лампу накаливания. Чтобы получить доступ к этому объекту, нажмите кнопку Lights (Осветители) на вкладке Create (Создать) командной панели и выберите категорию объектов Standard (Стандартные). Для настройки этого источника существуют определенные параметры (рис. 5.18), некоторые из них будут рассмотрены далее в упражнениях.

Рис. 5.18. Параметры стандартного осветителя типа Omni (Всенаправленный)


Target Direct (Нацеленный направленный) и Free Direct (Свободный направленный) – располагаются на той же вкладке командной панели, что и всенаправленный источник. Эти объекты испускают пучок лучей света, параллельных друг другу, с круглым или квадратным сечением изменяемых размеров. Свободный источник направлен по оси пучка света, испускаемого им, и допускает изменение направления поворотом этой оси. Нацеленный источник имеет мишень, на которую он направлен и которая управляется независимо от источника света, в то время как он, в свою очередь, остается постоянно нацеленным на нее. Направленные источники имеют параметры, схожие с всенаправленным источником, за исключением того, что у них есть настройка величины области незатухающего луча света относительно области затухания (рис. 5.19).

Рис. 5.19. Параметры настройки луча источника Direct (Направленный)


Target Spot (Нацеленный прожекторный) и Free spot (Свободный прожекторный) – в редакторе эти осветители находятся на вкладке со стандартными источниками освещения. Лучи прожектора, в отличие от направленных источников (Direct), ориентированы не параллельно, а расходятся конусом из одной точки, в которой располагается источник света. Примером такого источника могут служить софиты или карманный фонарик. Нацеленные источники обладают теми же свойствами, что и описанные выше. Как и у направленного осветителя, у прожекторного может изменяться область незатухающего света относительно области затухания.

Источник SkyLight (Свет неба), расположенный на той же вкладке со стандартными источниками, в отличие от остальных стандартных источников, строго говоря, не является таковым: воображаемые лучи света у него не исходят из одной точки. Кроме того, этот осветитель использует алгоритм расчета глобальной освещенности Light Tracer (Трассировщик лучей). При размещении его в сцене над ней располагается воображаемый купол – бесконечно большая полусфера, каждая точка которой испускает световые лучи. Данный источник является компонентом системы DayLight (Дневной свет), о которой будет рассказано далее. Кроме того, именно этот источник позволяет использовать карту HDRI (изображение с расширенным динамическим диапазоном) для освещения сцены.

Фотометрические источники освещения

В данной версии редактора 3ds max 2009 было сокращено число фотометрических источников до трех. Однако, несмотря на то, что в предыдущей версии их было восемь новые источники могут с легкостью воспроизвести любой из восьми осветителей прошлой версии (рис. 5.20). Если раньше каждый вид фотометрического источника был строго определенной формы (точечный, площадный и т. д.), то теперь форму можно выбирать из списка в настройках самого осветителя. Их параметры освещенности указываются в люменах, канделах, люксах, то есть как у источников света в реальной жизни. С помощью фотометрических источников появилась возможность соотносить в сценах мощность реального освещения с виртуальным, а также просчитывать глобальную освещенность при участии алгоритма Radiosity (Перенос излучения), как это обычно наблюдается в реальной жизни при попадании света на предметы.

Рис. 5.20. Фотометрические источники 3ds Max 9


Фотометрические источники подразделяются на следующие.

TargetLight (Нацеленный источник) – универсальный фотометрический осветитель в зависимости от выбранных настроек может испускать световые лучи из одной точки во всех направлениях, как лампа дневного света вниз и в стороны, как растровый источник имитировать световую площадку. Может использоваться как для имитации обычной лампочки накаливания, так и для имитации прожекторных источников путем изменения вида источника с помощью списка Light Distribution (Type) (Распределение света (тип)) (рис. 5.21). Если назначено Photometric Web, то это позволяет управлять распределением света при помощи специальных файлов *.IES, в которых особенным образом записана форма и интенсивность потока света, что создает реалистичные рефлексы на объектах сцены.

Рис. 5.21. Выбор типа фотометрического источника


FreeLight (Свободный источник) – полностью повторяет вышеописанный свободный источник с той лишь разницей, что имеет цель, позволяющую направить осветитель на определенную область или объект.

Источники Daylight (Дневной свет) – данный объект появился, начиная с пятой версии 3ds Max. Эта система позволяет учитывать отражение света поверхностью объектов и рассеяние его в атмосфере. Посредством этого источника создаются два связанных фотометрических осветителя – имитатор солнечного освещения (с учетом географических координат, времени года и суток) сцены и имитатор рассеянного света небосвода.

Фотометрические источники, включенные в сцену, позволяют относительно точно сымитировать освещенность, цвет и распределение силы света в пространстве, свойственные реальным источникам. Свет, испускаемый фотометрическими осветителями, затухает обратно пропорционально квадрату расстояния до освещаемой поверхности. Характеристики света от фотометрических источников, как уже было сказано выше, задаются в программе существующими физическими единицами – канделами (cd), люменами (lm), люксами (lx). Фотометрические источники наиболее точно проявляют свои свойства при использовании алгоритма расчета глобальной освещенности Radiosity (Перенос излучения). Если осветители этого вида использовать в сцене без расчета глобальной освещенности, то, скорее всего, света от них не будет хватать и их преимуществ вы не почувствуете.

Дополнительная возможность фотометрических источников заключается в том, что теперь с помощью списка Templates (Шаблоны) можно задать вид и мощность осветителя автоматически согласно указанному в списке типу.

Источники освещения Mental Ray

Так как внешний модуль рендеринга Mental Ray входит в состав стандартной поставки 3ds Max, нужно сказать пару слов о его источниках освещения, которые по умолчанию расположены на вкладке командной панели вместе со стандартными. В принципе, Mental Ray может корректно работать и со стандартными и фотометрическими источниками 3ds Max 2009, но при условии использования его в качестве системы визуализации, конечно, лучше применять осветители именно этого подключаемого модуля. По своему виду они напоминают стандартные объекты освещения типа Spot (Прожекторный) и Omni (Всенаправленный) (см. рис. 5.17). По списку параметров они также похожи на свои стандартные аналоги, только параметры Area Light Parameters (Параметры области света) у них схожи с аналогичными параметрами фотометрических осветителей.

Всего в программе находится пять источников освещения для модуля Mental Ray. Два из них: mr Area Omni (Всенаправленная область) и Mr Area Spot (Прожекторная область) имеют настройки и параметры, похожие на настройки стандартных источников 3ds Max 2009, но отличаются одним пунктом – Area Light Parameters (Параметры области света) (рис. 5.22), позволяющим управлять размерами области, из которой исходит свет, а также ее формой. Кроме того, при использовании теней типа Ray Traced Shadows (Тени прохождения лучей) эти источники после определенной настройки дают мягкие реалистичные тени.

Рис. 5.22. Настройки области света для осветителей Mental Ray

Параметры настройки осветителей

Для выбора объекта светового источника надо щелкнуть мышью на кнопке Lights (Осветители) вкладки Create (Создать) командной панели, из списка выбрать группу источников Standard (Стандартные) или Photometric (Фотометрические) и нажать кнопку источника требуемого типа. Внизу командной панели появятся списки параметров, состав которых зависит от типа осветителя. Первым в списке параметров стоит свиток Object Type (Тип объекта). Далее идет свиток Name and Color (Имя и цвет) с параметрами источника, определяющими, как он будет выглядеть на проекциях (при визуализации отображается только свет, испускаемый источником). Ниже расположен свиток General Parameters (Основные параметры), где находится флажок On (Вкл) (при выборе источника установлен по умолчанию) и указано «расстояние» до цели, если источник направленный. Ниже располагается флажок включения теней Shadows (Тени) и раскрывающийся список типов теней, используемых в построении сцен. Здесь же есть возможность исключить объекты сцены из освещения, нажав кнопку Exclude (Исключить), а затем выбрав из появившегося списка нужные и перенеся их в правую часть списка. Далее располагается свиток Intensity/ Color/Attenuation (Интенсивность, Цвет и Затухание). В нем можно настроить цвет лучей выбранного источника (по умолчанию белый) и интенсивность (по умолчанию – единица, или в единицах светового потока, если источник фотометрический). Здесь же можно настроить ближнее и дальнее затухание источника, выбрав его тип и назначив начало и конец области затухания света в единицах измерения, используемых в сцене. Если выбрать точечный источник типа Spot (Прожекторный), то в свитке Spotlight Parameters (Параметры пятна) можно настроить диаметр пятна света, излучаемого источником, и задать форму пятна в виде окружности или прямоугольника.

Параметры, расположенные в свитке Advanced Effects (Дополнительные эффекты), нужны для указания влияния источника освещения на поверхность. С помощью функции Projector Map (Карта проектора) можно использовать источник света как проектор, для чего нужно указать изображение (карту), которое будет проецироваться на любой объект, куда указывает цель источника. В свитке Shadow Parameters (Параметры теней), который расположен ниже, настраивается плотность теней и подсвечивание их разными цветами, а также проецирование карты на тень.

Ниже находится свиток с параметрами вида теней, которые будут выбраны пользователем для источника. В нем находятся настройки размера и качества отбрасываемых источником теней. Для назначения дополнительных эффектов постобработки (линзовые эффекты, эффект объемного света) предусмотрен свиток Atmospheres&Effects (Атмосфера и эффекты). И последними в списке параметров стоят параметры свитка Mental ray Indirect Illumination (Рассеянное освещение Mental Ray) (рис. 5.23) – при условии использования в качестве активного визуализатора Mental Ray с их помощью можно управлять рассеянным освещением, формируемым источником; Mental ray Light Shader (Шейдер света) – позволяет назначить источнику шейдер света и шейдер испускания фотонов.

Рис. 5.23. Параметры рассеянного освещения для источника Mental Ray


Примечание

Шейдер – небольшой подключаемый модуль (программа), определяющий свойства объекта (материала, осветителя, геометрии, камеры) при определенных условиях. В нужное время (обычно при рендеринге) ядро программы включает описанные в шейдере функции. Библиотеки шейдеров обычно поставляются вместе с программой трехмерной графики, но могут быть и загружены из Интернета с сайтов их создателей.

Установка источников света в сцену

После приблизительной настройки параметров осветителя для включения их в сцену необходимо перенести курсор (который примет вид креста) в нужную точку на одной из проекций сцены и щелкнуть левой кнопкой мыши (причем если это нацеленный источник, то нужно сначала подвинуть курсор в направлении цели, а затем отпустить кнопку мыши). После этого, если необходимо, стоит подкорректировать координаты источника и цели инструментом Select and Move (Выбрать и переместить). Для более точной настройки параметров источника и последующей их корректировки надо выделить источник в сцене и перейти на вкладку Modify (Модификация) командной панели, где можно будет видеть те же параметры, что и ранее при создании осветителя.

Сцены различаются по видам освещенности, и для каждой сцены стоит индивидуально подходить к настройке источников в отдельности и всего освещения в целом, однако есть некоторые рекомендации по освещению тех или иных сцен для 3ds Max 2009. Например, уличная сцена с применением осветителя Daylight (Дневной свет) будет освещена иначе, нежели космический пейзаж, так как распространение света в вакууме отличается от распределения его в атмосфере.

Bluetooth