Электроснабжение железных дорог — напряжение контактной сети. Как запитываются ЖД пути. Устройство контактной сети. Основные элементы Контактная сеть железных дорог

Контактная сеть представляет собой комплекс устройств для передачи электроэнергии от тяговых подстанций к ЭПС через токоприемники. Она является частью тяговой сети и для рельсового электрифицированного транспорта обычно служит ее фазой (при переменном токе) или полюсом (при постоянном токе); другой фазой (или полюсом) служит рельсовая сеть. Контактная сеть может быть выполнена с контактным рельсом или с контактной подвеской.
В контактной сети с контактной подвеской основными являются следующие элементы: провода – контактный провод, несущий трос, усиливающий провод и пр.; опоры; поддерживающие и фиксирующие устройства; гибкие и жесткие поперечины (консоли, фиксаторы); изоляторы и арматура различного назначения.
Контактную сеть с контактной подвеской классифицируют по видам электрифицированного транспорта, для которого она предназначена, – ж.-д. магистрального, городского (трамвая, троллейбуса), карьерного, рудничного подземного рельсового транспорта и др.; по роду тока и номинальному напряжению питающегося от сети ЭПС; по размещению контактной подвески относительно оси рельсового пути – для центрального токосъема (на магистральном ж.-д. транспорте) или бокового (на путях промышленного транспорта); по типам контактной подвески – с простой, цепной или специальной; по особенностям выполнения анкеровки контактного провода и несущего троса, сопряжений анкерных участков и др.
Контактная сеть предназначена для работы на открытом воздухе и поэтому подвержена воздействию климатических факторов, к которым относятся: температура окружающей среды, влажность и давление воздуха, ветер, дождь, иней и гололед, солнечная радиация, содержание в воздухе различных загрязнений. К этому необходимо добавить тепловые процессы, возникающие при протекании тягового тока по элементам сети, механическое воздействие на них со стороны токоприемников, электрокоррозионные процессы, многочисленные циклические механические нагрузки, износ и др. Все устройства контактной сети должны быть способны противостоять действию перечисленных факторов и обеспечивать высокое качество токосъема в любых условиях эксплуатации.
В отличие от других устройств электроснабжения, контактная сеть не имеет резерва, поэтому к ней по надежности предъявляют повышенные требования, с учетом которых осуществляются ее проектирование, строительство и монтаж, техническое обслуживание и ремонт.

Проектирование контактной сети

При проектировании контактной сети (КС) выбирают число и марку проводов, исходя из результатов расчетов системы тягового электроснабжения, а также тяговых расчетов; определяют тип контактной подвески в соответствии с максимальными скоростями движения ЭПС и другими условиями токосъема; находят длины пролета (гл. обр. по условиям обеспечения ее ветроустойчивости, а при высоких скоростях движения – и заданного уровня неравномерности эластичности); выбирают длину анкерных участков, типы опор и поддерживающих устройств для перегонов и станций; разрабатывают конструкции КС в искусственных сооружениях; размещают опоры и составляют планы контактной сети на станциях и перегонах с согласованием зигзагов проводов и учетом выполнения воздушных стрелок и элементов секционирования контактной сети (изолирующих сопряжений анкерных участков и нейтральных вставок, секционных изоляторов и разъединителей).
Основные размеры (геометрические показатели), характеризующие размещение контактной сети относительно других устройств, – высота Н подвешивания контактного провода над уровнем верха головки рельса; расстояние А от частей, находящихся под напряжением, до заземленных частей сооружений и подвижного состава; расстояние Г от оси крайнего пути до внутреннего края опор, находящегося на уровне головок рельсов, – регламентированы и в значительной мере определяют конструктивное выполнение элементов контактной сети (рис. 8.9).

Совершенствование конструкций контактной сети направлено на повышение ее надежности при снижении стоимости строительства и эксплуатации. Железобетонные опоры и фундаменты металлических опор выполняют с защитой от электрокоррозионного воздействия на их арматуру блуждающих токов. Увеличение срока службы контактных проводов достигается, как правило, применением на токоприемниках вставок с высокими антифрикционными свойствами (угольных, в т. ч. металлосодержащих; металлокерамических и др.), выбором рациональной конструкции токоприемников, а также оптимизацией режимов токосъема.
Для повышения надежности контактной сети осуществляют плавку гололеда, в т.ч. без перерыва движения поездов; применяют ветроустойчивые контактные подвески и т. д. Оперативности выполнения работ на контактной сети способствует применение телеуправления для дистанционного переключения секционных разъединителей.

Анкеровка проводов

Анкеровка проводов – прикрепление проводов контактной подвески через включенные в них изоляторы и арматуру к анкерной опоре с передачей на нее их натяжения. Анкеровка проводов бывает некомпенсированная (жесткая) или компенсированная (рис. 8.16) через компенсатор, изменяющий длину провода в случае изменения его температуры при сохранении заданного натяжения.

В середине анкерного участка контактной подвески выполняется средняя анкеровка (рис. 8.17), которая препятствует нежелательным продольным перемещениям в сторону одной из анкеровок и позволяет ограничить зону повреждения контактной подвески при обрыве одного из ее проводов. Трос средней анкеровки прикрепляют к контактному проводу и несущему тросу соответствующей арматурой.

Компенсация натяжения проводов

Компенсация натяжения проводов (автоматическое регулирование) контактной сети при изменении их длины в результате температурных воздействий осуществляется компенсаторами различных конструкций -блочно-грузовыми, с барабанами различного диаметра, гидравлическими, газогидравлическими, пружинными и др.
Наиболее простым является блочно-грузовой компенсатор, состоящий из груза и нескольких блоков (полиспаста), через которые груз присоединяют к анкеруемому проводу. Наибольшее распространение получил трех-блочный компенсатор (рис. 8.18), в котором неподвижный блок закреплен на опоре, а два подвижных вложены в петли, образуемые тросом, несущим груз и закрепленным другим концом в ручье неподвижного блока. Анкеруемый провод через изоляторы прикреплен к подвижному блоку. В этом случае вес груза составляет 1/4 номинального натяжения (обеспечивается передаточное отношение 1:4), но перемещение груза вдвое больше, чем у двух-6лочного компенсатора (с одним подвижным блоком).

компенсаторах с барабанами разного диаметра (рис. 8.19) на барабан малого диаметра наматываются тросы, связанные с анкеру емыми проводами, а на барабан большего диаметра – трос, связанный с гирляндой грузов. Тормозное устройство служит для предотвращения повреждений контактной подвески при обрыве провода.

При особых условиях эксплуатации, особенно при ограниченных габаритах в искусственных сооружениях, незначительных перепадах температуры нагрева проводов и т. д., применяют компенсаторы и других типов для проводов контактной подвески, фиксирующих тросов и жестких поперечин.

Фиксатор контактного провода
Фиксатор контактного провода – устройство для фиксации положения контактного провода в горизонтальной плоскости относительно оси токоприемников. На криволинейных участках, где уровни головок рельсов различны и ось токоприемника не совпадает с осью пути, применяют несочлененные и сочлененные фиксаторы.
Несочлененный фиксатор имеет один стержень, оттягивающий контактный провод от оси токоприемника к опоре (растянутый фиксатор) или от опоры (сжатый фиксатор) на размер зигзага. На электрифицированных ж. д. несочлененные фиксаторы применяют очень редко (в анкеруемых ветвях контактной подвески, на некоторых воздушных стрелках), т. к. образующаяся при этих фиксаторах «жесткая точка» на контактном проводе ухудшает токосъем.

Сочлененный фиксатор состоит из трех элементов: основного стержня, стойки и дополнительного стержня, на конце которого крепится фиксирующий зажим контактного провода (рис. 8.20). Вес основного стержня не передается на контактный провод, и он воспринимает только часть веса дополнительного стержня с фиксирующим зажимом. Стержни имеют форму, обеспечивающую надежный проход токоприемников при отжатии ими контактного провода. Для скоростных и высокоскоростных линий применяют облегченные дополнительные стержни, например, выполненные из алюминиевых сплавов. При двойном контактном проводе на стойке устанавливают два дополнительных стержня. На внешней стороне кривых малых радиусов монтируют гибкие фиксаторы в виде обычного дополнительного стержня, который через трос и изолятор крепят к кронштейну, стойке или непосредственно к опоре. На гибких и жестких поперечинах с фиксирующими тросами обычно используют полосовые фиксаторы (по аналогии с дополнительным стержнем), закрепленные шарнирно зажимами с ушком, установленным на фиксирующем тросе. На жестких поперечинах можно также крепить фиксаторы на специальных стойках.

Анкерный участок

Анкерный участок – участок контактной подвески, границами которого являются анкерные опоры. Деление контактной сети на анкерные участки необходимо для включения в провода устройств, поддерживающих натяжение проводов при изменении их температуры и осуществления продольного секционирования контактной сети. Это деление уменьшает зону повреждения в случае обрыва проводов контактной подвески, облегчает монтаж, техн. обслуживание и ремонт контактной сети. Длина анкерного участка ограничивается допустимыми отклонениями от задаваемого компенсаторами номинального значения натяжения проводов контактной подвески.
Отклонения вызваны изменениями положения струн, фиксаторов и консолей. Например, при скоростях движения до 160 км/ч максимальная длина анкерного участка при двусторонней компенсации на прямых участках не превышает 1600 м, а при скоростях 200 км/ч допускается не более 1400 м. В кривых длина анкерных участков уменьшается тем больше, чем больше протяженность кривой и меньше ее радиус. Для перехода с одного анкерного участка на следующий выполняют неизолирующие и изолирующие сопряжения.

Сопряжение анкерных участков

Сопряжение анкерных участков – функциональное объединение двух смежных анкерных участков контактной подвески, обеспечивающее удовлетворительный переход токоприемников ЭПС с одного из них на другой без нарушения режима токосъема благодаря соответствующему размещению в одних и тех же (переходных) пролетах контактной сети конца одного анкерного участка и начала другого. Различают сопряжения неизолирующие (без электрического секционирования контактной сети) и изолирующие (с секционированием).
Неизолирующие сопряжения выполняют во всех случаях, когда требуется включить в провода контактной подвески компенсаторы. При этом достигается механическая независимость анкерных участков. Такие сопряжения монтируют в трех (рис. 8.21,а) и реже в двух пролетах. На высокоскоростных магистралях сопряжения иногда выполняют в 4-5 пролетах из-за более высоких требований к качеству токосъема. На неизолирующих сопряжениях имеются продольные электрические соединители, площадь сечения которых должна быть эквивалентна площади сечения проводов контактной сети.

Изолирующие сопряжения применяют при необходимости секционирования контактной сети, когда, кроме механической, нужно обеспечить и электрическую независимость сопрягаемых участков. Такие сопряжения устраивают с нейтральными вставками (участками контактной подвески, на которых нормально напряжение отсутствует) и без них. В последнем случае обычно применяют трех-или четырехпролетные сопряжения, располагая контактные провода сопрягаемых участков в среднем пролете (пролетах) на расстоянии 550 мм один от другого (рис. 8.21,6). При этом образуется воздушный промежуток, который совместно с изоляторами, включенными в приподнятые контактные подвески у переходных опор, обеспечивает электрическую независимость анкерных участков. Переход полоза токоприемника с контактного провода одного анкерного участка на другой происходит так же, как и при неизолирующем сопряжении. Однако, когда токоприемник находится в среднем пролете, электрическая независимость анкерных участков нарушается. Если такое нарушение недопустимо, применяют нейтральные вставки разной длины. Ее выбирают такой, чтобы при нескольких поднятых токоприемниках одного поезда было исключено одновременное перекрытие обоих воздушных промежутков, что привело бы к замыканию проводов, питающихся от разных фаз и находящихся под различными напряжениями. Сопряжение с нейтральной вставкой во избежание пережога контактного провода ЭПС проходит на выбеге, для чего за 50 м до начала вставки устанавливают сигнальный знак «Отключить ток», а после конца вставки при электровозной тяге через 50 м и при моторвагонной тяге через 200 м – знак «Включить ток» (рис. 8.21,в). На участках со скоростным движением необходимы автоматические средства отключения тока на ЭПС. Чтобы можно было вывести поезд при его вынужденной остановке под нейтральной вставкой, предусмотрены секционные разъединители для временной подачи напряжения на нейтральную вставку со стороны направления движения поезда.

Секционирование контактной сети
Секционирование контактной сети – разделение контактной сети на отдельные участки (секции), электрически разъединенные изолирующими сопряжениями анкерных участков или секционными изоляторами. Изоляция может быть нарушена во время прохода токоприемника ЭПС по границе раздела секций; если такое замыкание недопустимо (при питании смежных секций от различных фаз или принадлежности их к различным системам тягового электроснабжения), между секциями размещают нейтральные вставки. В условиях эксплуатации электрическое соединение отдельных секций осуществляют, включая секционные разъединители, установленные в соответствующих местах. Секционирование необходимо также для надежной работы устройств электроснабжения в целом, оперативного технического обслуживания и ремонта контактной сети с отключением напряжения. Схема секционирования предусматривает такое взаимное расположение секций, при котором отключение одной из них в наименьшей степени влияет на организацию движения поездов.
Секционирование контактной сети бывает продольным и поперечным. При продольном секционировании осуществляют разделение контактной сети каждого главного пути вдоль электрифицированной линии у всех тяговых подстанций и постов секционирования. В отдельные продольные секции выделяют контактную сеть перегонов, подстанций, разъездов и обгонных пунктов. На крупных станциях, имеющих несколько электрифицированных парков или групп путей, контактная сеть каждого парка или групп путей образует самостоятельные продольные секции. На очень крупных станциях иногда выделяют в отдельные секции контактную сеть одной или обеих горловин. Секционируют также контактную сеть в протяженных тоннелях и на некоторых мостах с ездой понизу. При поперечном секционировании осуществляют разделение контактной сети каждого из главных путей на всем протяжении электрифицированной линии. На станциях, имеющих значительное путевое развитие, применяют дополнительное поперечное секционирование. Число поперечных секций определяется числом и назначением отдельных путей, а в ряде случаев и режимами трогания ЭПС, когда необходимо использовать площадь сечения контактных подвесок соседних путей.
Секционирование с обязательным заземлением отключенной секции контактной сети предусматривают для путей, на которых могут находиться люди на крышах вагонов или локомотивов, либо путей, вблизи которых работают подъемно-транспортные механизмы (погрузочно-разгрузочные, экипировочные пути и др.). Для обеспечения большей безопасности работающих в этих местах соответствующие секции контактной сети соединяют с другими секциями секционными разъединителями с заземляющими ножами; эти ножи заземляют отключаемые секции при отключении разъединителей.

На рис. 8.22 приведен пример схемы питания и секционирования станции, расположенной на двухпутном участке линии, электрифицированной на переменном токе. На схеме показаны семь секций – четыре на перегонах и три на станции (одна из них с обязательным заземлением при ее отключении). Контактная сеть путей левого перегона и станции получает питание от одной фазы энергосистемы, а путей правого перегона – от другой. Соответственно выполнено секционирование с помощью изолирующих сопряжений и нейтральных вставок. На участках, где требуется плавка гололеда, на нейтральной вставке устанавливают два секционных разъединителя с моторными приводами. Если плавка гололеда не предусмотрена, достаточно одного секционного разъединителя с ручным приводом.

Для секционирования контактной сети главных и боковых сетей на станциях применяют секционные изоляторы. В некоторых случаях секционные изоляторы используют для образования на контактной сети переменного тока нейтральных вставок, которые ЭПС проходит, не потребляя тока, а также на путях, где длина съездов недостаточна для размещения изолирующих сопряжений.
Соединение и разъединение различных секций контактной сети, а также соединение с питающими линиями осуществляют с помощью секционных разъединителей. На линиях переменного тока, как правило, применяют разъединители горизонтально-поворотного типа, на линиях постоянного тока – вертикально-рубящего. Управляют разъединителем дистанционно с пультов, установленных в дежурном пункте района контактной сети, в помещениях дежурных по станциям и в других местах. Наиболее ответственные и часто переключаемые разъединители установлены в сети диспетчерского телеуправления.
Различают разъединители продольные (для соединения и разъединения продольных секций контактной сети), поперечные (для соединения и разъединения ее поперечных секций), фидерные и др. Их обозначают буквами русского алфавита (например, продольные -А, Б, В, Г; поперечные – П; фидерные – Ф) и цифрами, соответствующими номерам путей и секций контактной сети (например, П23).
Для обеспечения безопасности проведения работ на отключенной секции контактной сети или вблизи нее (в депо, на путях экипировки и осмотра крышевого оборудования ЭПС, на путях погрузки и разгрузки вагонов и др.) устанавливают разъединители с одним заземляющим ножом.

Воздушная стрелка

Воздушная стрелка – образована пересечением двух контактных подвесок над стрелочным переводом; предназначена для обеспечения плавного и надежного прохода токоприемника с контактного провода одного пути на контактный провод другого. Пересечение проводов осуществляется наложением одного провода (как правило, примыкающего пути) на другой (рис. 8.23). Для подъема обоих проводов при подходе токоприемника к воздушной стрелке на нижнем проводе укреплена ограничительная металлическая труба длиной 1-1,5 м. Верхний провод располагают между трубкой и нижним проводом. Пересечение контактных проводов над одиночным стрелочным переводом осуществляют со смещением каждого провода к центру от осей путей на 360-400 мм и располагают там, где расстояние между внутренними гранями головок соединительных рельсов крестовины составляет 730-800 мм. На перекрестных стрелочных переводах и при т. н. глухих пересечениях провода перекрещиваются над центром стрелочного перевода или пересечения. Воздушные стрелки выполняют, как правило, фиксированными. Для этого на опорах устанавливают фиксаторы, удерживающие контактные провода в заданном положении. На станционных путях (кроме главных) стрелки могут быть выполнены нефиксированными, если провода над стрелочным переводом располагаются в положении, заданном регулировкой зигзагов у промежуточных опор. Струны контактной подвески, находящиеся вблизи стрелок, должны быть двойными. Электрический контакт между контактными подвесками, образующими воздушную стрелку, обеспечивает электрический соединитель, установленный на расстоянии 2-2,5 м от места пересечения со стороны остряка. Для повышения надежности применяют конструкции стрелок с дополнительными перекрестными связями между проводами обеих контактных подвесок и скользящие поддерживающие двойные струны.

Опоры контактной сети

Опоры контактной сети – конструкции для закрепления поддерживающих и фиксирующих устройств контактной сети, воспринимающие нагрузку от ее проводов и других элементов. В зависимости от вида поддерживающего устройства опоры разделяют на консольные (однопутного и двухпутного исполнения); стойки жестких поперечин (одиночные или спаренные); опоры гибких поперечин; фидерные (с кронштейнами только для питающих и отсасывающих проводов). Опоры, на которых отсутствуют поддерживающие, но имеются фиксирующие устройства, называются фиксирующими. Консольные опоры разделяют на промежуточные – для крепления одной контактной подвески; переходные, устанавливаемые на сопряжениях анкерных участков,- для крепления двух контактных проводов; анкерные, воспринимающие усилие от анкеровки проводов. Как правило, опоры выполняют одновременно несколько функций. Например, опора гибкой поперечины может быть анкерной, на стойках жесткой поперечины могут быть подвешены консоли. К стойкам опор можно закрепить кронштейны для усиливающих и других проводов.
Опоры изготавливают железобетонными, металлическими (стальными) и деревянными. На отечественных ж. д. применяют в основном опоры из предварительно напряженного железобетона (рис. 8.24), конические центрифугированные, стандартной длины 10,8; 13,6; 16,6 м. Металлические опоры устанавливают в тех случаях, когда по несущей способности или по размерам невозможно использовать железобетонные (например, в гибких поперечинах), а также на линиях с высокоскоростным движением, где предъявляются повышенные требования к надежности опорных конструкций. Деревянные опоры применяют только как временные.

Для участков постоянного тока железобетонные опоры изготавливают с дополнительной стержневой арматурой, расположенной в фундаментной части опор и предназначенной для уменьшения повреждений арматуры опор электрокоррозией, вызываемой блуждающими токами. В зависимости от способа установки железобетонные опоры и стойки жестких поперечин бывают раздельные и нераздельные, устанавливаемые непосредственно в грунт. Требуемая устойчивость нераздельных опор в грунте обеспечивается верхним лежнем или опорной плитой. В большинстве случаев применяют нераздельные опоры; раздельные используют при недостаточной устойчивости нераздельных, а также при наличии грунтовых вод, затрудняющих установку нераздельных опор. В анкерных железобетонных опорах применяют оттяжки, которые устанавливают вдоль пути под углом 45° и крепят к железобетонным анкерам. Железобетонные фундаменты в надземной части имеют стакан глубиной 1,2 м, в который устанавливают опоры и затем заделывают пазухи стакана цементным раствором. Для заглубления фундаментов и опор в грунт используют преимущественно способ вибропогружения.
Металлические опоры гибких поперечин изготавливают обычно четырехгранной пирамидальной формы, их стандартная длина 15 и 20 м. Продольные вертикальные стойки из углового проката соединяют треугольной решеткой, выполненной также из уголка. В районах, отличающихся повышенной атмосферной коррозией, металлические консольные опоры длиной 9,6 и 11 м закрепляют в грунте на железобетонных фундаментах. Консольные опоры устанавливают на призматических трехлучевых фундаментах, опоры гибких поперечин – либо на раздельных железобетонных блоках, либо на свайных фундаментах с ростверками. Основание металлических опор соединяют с фундаментами анкерными болтами. Для закрепления опор в скальных грунтах, пучинистых грунтах районов вечной мерзлоты и глубокого сезонного промерзания, в слабых и заболоченных грунтах и т. п. применяют фундаменты специальных конструкций.

Консоль

Консоль – поддерживающее устройство, закрепленное на опоре, состоящее из кронштейна и тяги. В зависимости от числа перекрываемых путей консоль может быть одно-, двух- и реже многопутной. Для исключения механической связи между контактными подвесками различных путей и повышения надежности чаще используют однопутные консоли. Применяют неизолированные, или заземленные консоли, при которых изоляторы находятся между несущим тросом и кронштейном, а также в стержне фиксатора, и изолированные консоли с изоляторами, размещенными в кронштейнах и тягах. Неизолированные консоли (рис. 8.25) по форме могут быть изогнутыми, наклонными и горизонтальными. Для опор, установленных с увеличенным габаритом, применяют консоли с подкосами. На сопряжениях анкерных участков при монтаже на одной опоре двух консолей используют специальную траверсу. Горизонтальные консоли применяют в тех случаях, когда высота опор достаточна для закрепления наклонной тяги.

При изолированных консолях (рис. 8.26) возможно проводить работы на несущем тросе вблизи них без отключения напряжения. Отсутствие изоляторов на неизолированных консолях обеспечивает большую стабильность положения несущего троса при различных механических воздействиях, что благоприятно сказывается на процессе токосъема. Кронштейны и тяги консолей крепят на опорах с помощью пят, допускающих их поворот вдоль оси пути на 90° в обе стороны относительно нормального положения.

Гибкая поперечина

Гибкая поперечина – поддерживающее устройство для подвешивания и фиксации проводов контактной сети, расположенных над несколькими путями. Гибкая поперечина представляет собой систему тросов, натянутых между опорами поперек электрифицированных путей (рис. 8.27). Поперечные несущие тросы воспринимают все вертикальные нагрузки от проводов цепных подвесок, самой поперечины и других проводов. Стрела провеса этих тросов должна быть не менее Vio длины пролета между опорами: это уменьшает влияние температуры на высоту крепления контактных подвесок. Для повышения надежности поперечин используют не менее двух поперечных несущих тросов.

Фиксирующие тросы воспринимают горизонтальные нагрузки (верхний – от несущих тросов цепных подвесок и других проводов, нижний – от контактных проводов). Электрическая изоляция тросов от опор позволяет обслуживать контактную сеть без отключения напряжения. Все тросы для регулирования их длины закрепляют на опорах с помощью стальных штанг с резьбой; в некоторых странах с этой целью применяют специальные демпферы, преимущественно для крепления контактной подвески на станциях.

Токосъем

Токосъем – процесс передачи электрической энергии от контактного провода или контактного рельса к электрооборудованию движущегося или неподвижного ЭПС через токоприемник, обеспечивающий скользящий (на магистральном, промышленном и большей части городского электротранспорта) или катящийся (на некоторых видах ЭПС городского электротранспорта) электрический контакт. Нарушение контакта при токосъеме приводит к возникновению бесконтактной электродуговой эрозии, следствием чего является интенсивный износ контактного провода и контактных вставок токоприемника. При перегрузке точек контакта током в режиме движения возникают контактная электровзрывная эрозия (искрение) и повышенный износ контактирующих элементов. Длительная перегрузка контакта рабочим током или током КЗ при стоянке ЭПС может привести к пережогу контактного провода. Во всех этих случаях необходимо ограничивать нижний предел контактного нажатия для заданных условий эксплуатации. Чрезмерное контактное нажатие, в т.ч. в результате аэродинамического воздействия на токоприемник, повышение динамической составляющей и вызванное ими увеличение вертикального отжатия провода, особенно у фиксаторов, на воздушных стрелках, в местах сопряжения анкерных участков и в зоне искусственных сооружений, может снизить надежность контактной сети и токоприемников, а также увеличить интенсивность изнашивания провода и контактных вставок. Следовательно, верхний предел контактного нажатия также необходимо нормировать. Оптимизацию режимов токосъема обеспечивают скоординированные требования к устройствам контактной сети и токоприемникам, что гарантирует высокую надежность их эксплуатации при минимальных приведенных расходах.
Качество токосъема может определяться разными показателями (числом и продолжительностью нарушений механического контакта на расчетном участке пути, степенью стабильности контактного нажатия, близкой к оптимальному значению, интенсивностью изнашивания контактных элементов и др.), которые в значительной мере зависят от конструктивного выполнения взаимодействующих систем – контактной сети и токоприемников, их статических, динамических, аэродинамических, демпфирующих и других характеристик. Несмотря на то, что процесс токосъема зависит от большого числа случайных факторов, результаты исследований и опыт эксплуатации позволяют выявить основополагающие принципы создания систем токосъема с требуемыми свойствами.

Жесткая поперечина

Жесткая поперечина – служит для подвешивания проводов контактной сети, расположенных над несколькими (2-8) путями. Жесткая поперечина выполняется в виде блочной металлической конструкции (ригеля), установленной на двух опорах (рис. 8.28). Такие поперечины используют также для разрекрываемого пролета. Ригель со стойками соединен шарнирно или жестко с помощью подкосов, позволяющих разгрузить его в середине пролета и уменьшить расход стали. При размещении на ригеле осветительных приборов на нем выполняют настил с перилами; предусматривают лестницу для подъема на опоры обслуживающего персонала. Устанавливают жесткие поперечины гл. обр. на станциях и раздельных пунктах.

Изоляторы

Изоляторы – устройства для изоляции проводов контактной сети, находящихся под напряжением. Различают изоляторы по направлению приложения нагрузок и месту установки – подвесные, натяжные, фиксаторные и консольные; по конструкции – тарельчатые и стержневые; по материалу – стеклянные, фарфоровые и полимерные; к изоляторам относят также изолирующие элементы
Подвесные изоляторы – фарфоровые и стеклянные тарельчатые – обычно соединяют в гирлянды по 2 на линиях постоянного тока и по 3-5 (в зависимости от загрязнения воздуха) на линиях переменного тока. Натяжные изоляторы устанавливают в анкеровках проводов, в несущих тросах над секционными изоляторами, в фиксирующих тросах гибких и жестких поперечин. Фиксаторные изоляторы (рис. 8.29 и 8.30) отличаются от всех других наличием внутренней резьбы в отверстии металлической шапки для закрепления трубы. На линиях переменного тока применяют обычно стержневые изоляторы, а постоянного – и тарельчатые. В последнем случае в основной стержень сочлененного фиксатора включают еще один тарельчатый изолятор с серьгой. Консольные фарфоровые стержневые изоляторы (рис. 8.31) устанавливают в подкосах и тягах изолированных консолей. Эти изоляторы должны иметь повышенную механическую прочность, т. к. работают на изгиб. В секционных разъединителях и роговых разрядниках применяют обычно фарфоровые стержневые, реже тарельчатые изоляторы. В секционных изоляторах на линиях постоянного тока используют полимерные изолирующие элементы в виде прямоугольных брусков из пресс-материала, а на линиях переменного тока -в виде цилиндрических стеклопластиковых стержней, на которые надеты электрозащитные чехлы из фторопластовых труб. Разработаны полимерные стержневые изоляторы с сердечниками из стеклопластика и ребрами из кремнийорганического эластомера. Их применяют в качестве подвесных, секционирующих и фиксаторных; они перспективны для установки в подкосах и тягах изолированных консолей, в тросах гибких поперечин и т. п. В зонах промышленного загрязнения воздуха и в некоторых искусственных сооружениях проводится периодическая очистка (обмывка) фарфоровых изоляторов с помощью специальных передвижных средств.

Контактная подвеска

Контактная подвеска – одна из ос новных частей контактной сети, представляет собой систему проводов, взаимное расположение которых, способ механического соединения, материал и сечение обеспечивают необходимое качество токосъема. Конструкция контактной подвески (КП) определяется экономической целесообразностью, эксплуатационными условиями (максимальной скоростью движения ЭПС, наибольшей силой тока, снимаемого токоприемниками), климатическими условиями. Необходимость обеспечения надежного токосъема при возрастающих скоростях движения и мощности ЭПС определила тенденции изменения конструкций подвесок: сначала простые, затем одинарные с простыми струнами и более сложные – рессорные одинарные, двойные и специальные, в которых для обеспечения требуемого эффекта, гл. обр. выравнивания вертикальной эластичности (или жесткости) подвески в пролете, используются пространственно-вантовые системы с дополнительным тросом или другие.
При скоростях движения до 50 км/ч удовлетворительное качество токосъема обеспечивает простая контактная подвеска, состоящая только из контактного провода, подвешенного к опорам А и В контактной сети (рис. 8.10,а) или поперечным тросам.

Качество токосъема во многом определяется стрелой провеса провода, зависящей от результирующей нагрузки на провод, которая складывается из собственного веса провода (при гололеде вместе со льдом) и ветровой нагрузки, а также от длины пролета и натяжения провода. На качество токосъема большое влияние оказывает угол а (чем он меньше, тем хуже качество токосъема), значительно изменяется контактное нажатие, появляются ударные нагрузки в опорной зоне, происходит усиленный износ контактного провода и токосъемных вставок токоприемника. Несколько улучшить токосъем в опорной зоне можно, применив подвешивание провода в двух точках (рис. 8.10,6), что при определенных условиях обеспечивает надежный токосъем при скоростях движения до 80 км/ч. Заметно улучшить токосъем при простой подвеске можно, только существенно уменьшив длину пролетов с целью снижения стрелы провеса, что в большинстве случаев неэкономично, либо применив специальные провода со значительным натяжением. В связи с этим применяют цепные подвески (рис. 8.11), в которых контактный провод подвешен к несущему тросу с помощью струн. Подвеска, состоящая из несущего троса и контактного провода, называется одинарной; при наличии вспомогательного провода между несущим тросом и контактным проводом – двойной. В цепной подвеске несущий трос и вспомогательный провод участвуют в передаче тягового тока, поэтому они соединены с контактным проводом электрическими соединителями либо токопроводящими струнами.

Основной механической характеристикой контактной подвески принято считать эластичность – отношение высоты подъема контактного провода к приложенной к нему и направленной вертикально вверх силе. Качество токосъема зависит от характера изменения эластичности в пролете: чем она стабильнее, тем лучше токосъем. В простых и обычных цепных подвесках эластичность в середине пролета выше, чем у опор. Выравнивание эластичности в пролете одинарной подвески достигается установкой рессорных тросов длиной 12-20 м, на которых крепят вертикальные струны, а также рациональным расположением обычных струн в средней части пролета. Более постоянной эластичностью обладают двойные подвески, но они дороже и сложнее. Для получения высокого показателя равномерности распределения эластичности в пролете используют различные способы ее повышения в зоне опорного узла (установка пружинных амортизаторов и упругих стержней, торсионный эффект от скручивания троса и др.). В любом случае при разработке подвесок необходимо учитывать их диссипативные характеристики, т. е. устойчивость к воздействию внешних механических нагрузок.
Контактная подвеска является колебательной системой, поэтому при взаимодействии с токоприемниками может находиться в состоянии резонанса, вызванного совпадением или кратностью частот ее собственных колебаний и вынужденных колебаний, определяемых скоростью проследования токоприемника по пролету с заданной длиной. При возникновении резонансных явлений возможно заметное ухудшение токосъема. Предельной для токосъема является скорость распространения механических волн вдоль подвески. В случае превышения этой скорости токоприемнику приходится взаимодействовать как бы с жесткой, недеформируемой системой. В зависимости от нормируемых удельных натяжений проводов подвески такая скорость может составлять 320-340 км/ч.
Простые и цепные подвески состоят из отдельных анкерных участков. Закрепления подвески “на концах анкерных участков могут быть жесткими или компенсированными. На магистральных ж. д. применяют в основном компенсированные и полукомпенсированные подвески. В полукомпенсированных подвесках компенсаторы имеются только в контактном проводе, в компенсированных – еще и в несущем тросе. При этом в случае изменения температуры проводов (вследствие прохождения по ним токов, изменения температуры окружающей среды) стрелы провеса несущего троса, а следовательно, и вертикальное положение контактных проводов остаются неизменными. В зависимости от характера изменения эластичности подвесок в пролете стрелу провеса контактного провода принимают в диапазоне от 0 до 70 мм. Вертикальную регулировку полукомпенсированных подвесок осуществляют так, чтобы оптимальная стрела провеса контактного провода соответствовала среднегодовой (для данного района) температуре окружающего воздуха.
Конструктивную высоту подвески – расстояние между несущим тросом и контактным проводом в точках подвеса – выбирают исходя из технико-экономических соображений, а именно – с учетом высоты опор, соблюдения действующих вертикальных габаритов приближения строений, изоляционных расстояний, особенно в зоне искусственных сооружений и др.; кроме того, должен быть обеспечен минимальный наклон струн при экстремальных значениях температуры окружающего воздуха, когда могут возникнуть заметные продольные перемещения контактного провода относительно несущего троса. Для компенсированных подвесок это возможно, если несущий трос и контактный провод выполнены из различных материалов.
Для увеличения срока службы контактных вставок токоприемников контактный провод располагают в плане с зигзагом. Возможны различные варианты подвески несущего троса: в тех же вертикальных плоскостях, что и контактный провод (вертикальная подвеска), по оси пути (полукосая подвеска), с зигзагами, противоположными зигзагам контактного провода (косая подвеска). Вертикальная подвеска обладает меньшей ветроустойчивостью, косая – наибольшей, но она наиболее сложна при монтаже и обслуживании. На прямых участках пути в основном применяется полукосая подвеска, на криволинейных – вертикальная. На участках с особенно сильными ветровыми нагрузками широко используют ромбовидную подвеску, в которой два контактных провода, подвешенных к общему несущему тросу, располагаются у опор с противоположными зигзагами. В средних частях пролетов провода притянуты один к другому жесткими планками. В некоторых подвесках поперечная устойчивость обеспечивается применением двух несущих тросов, образующих в горизонтальной плоскости своего рода вантовую систему.
За рубежом в основном применяют цепные одинарные подвески, в т. ч. на скоростных участках – с рессорными проводами, простыми разнесенными опорными струнами, а также с несущими тросами и контактными проводами, имеющими повышенные натяжения.

Контактный провод

Контактный провод – наиболее ответственный элемент контактной подвески, непосредственно осуществляющий контакт с токоприемниками ЭПС в процессе токосъема. Как правило, используют один или два контактных провода. Два провода обычно применяют при съеме токов более 1000 А. На отечественных ж. д. применяют контактные провода с площадью сечения 75, 100, 120, реже 150 мм2; за рубежом – от 65 до 194 мм2. Форма сечения провода претерпевала некоторые изменения; в нач. 20 в. профиль сечения приобрел форму с двумя продольными пазами в верхней части – головке, служащими для закрепления на проводе арматуры контактной сети. В отечественной практике размеры головки (рис. 8.12) одинаковы для различных площадей сечения; в других странах размеры головки зависят от площади сечения. В России контактный провод маркируют буквами и цифрами, указывающими материал, профиль и площадь сечения в мм2 (например, МФ-150 – медный фасонный, площадь сечения 150 мм2).

Широкое распространение в последние годы получили низколегированные медные провода с присадками серебра, олова, которые повышают износо- и термостойкость провода. Лучшие показатели по износостойкости (в 2-2,5 раза выше, чем у медного провода) имеют бронзовые медно-кадмиевые провода, однако они дороже медных, а их электрическое сопротивление выше. Целесообразность применения того или иного провода определяется технико-экономическим расчетом с учетом конкретных условий эксплуатации, в частности при решении вопросов обеспечения токосъема на высокоскоростных магистралях. Определенный интерес представляет биметаллический провод (рис. 8.13), подвешиваемый в основном на приемо-отправочных путях станций, а также комбинированный сталеалюминиевый провод (контактная часть – стальная, рис. 8.14).

В процессе эксплуатации происходит изнашивание контактных проводов при токосъеме. Различают электрическую и механическую составляющие износа. Для предотвращения обрыва проводов из-за возрастания растягивающих напряжений нормируется максимальное значение износа (например, для провода с площадью сечения 100 мм допускаемый износ составляет 35 мм2); по мере увеличения износа провода периодически уменьшают его натяжение.
При эксплуатации разрыв контактного провода может произойти в результате термического воздействия электрического тока (дуги) в зоне взаимодействия с другим устройством, т. е. в результате пережога провода. Наиболее часто пережоги контактного провода происходят в следующих случаях: над токоприемниками неподвижного ЭПС вследствие КЗ в его высоковольтных цепях; при подъеме или опускании токоприемника из-за протекания тока нагрузки или КЗ через электрическую дугу; при увеличении контактного сопротивления между проводом и контактными вставками токоприемника; наличии гололеда; замыкании полозом токоприемника раз-нопотеициальных ветвей изолирующего сопряжения анкерных участков и др.
Основными мерами предотвращения пережогов провода являются: повышение чувствительности и быстродействия защиты от токов КЗ; применение на ЭПС блокировки, препятствующей подъему токоприемника под нагрузкой и принудительно отключающей ее при опускании; оборудование изолирующих сопряжений анкерных участков защитными устройствами, способствующими гашению дуги в зоне возможного ее возникновения; своевременные меры, предотвращающие гололедные отложения на проводах, и др.

Несущий трос

Несущий трос – провод цепной подвески, прикрепленный к поддерживающим устройствам контактной сети. К несущему тросу с помощью струн подвешивается контактный провод – непосредственно или через вспомогательный трос.
На отечественных ж. д. на главных путях линий, электрифицированных на постоянном токе, в качестве несущего троса применяют в основном медный провод с площадью сечения 120 мм2, а на боковых путях станций -сталемедный (70 и 95 мм2). За рубежом на линиях переменного тока используют также бронзовые и стальные тросы сечением от 50 до 210 мм2. Натяжение троса в полукомпенсированной контактной подвеске изменяется в зависимости от температуры окружающего воздуха в пределах от 9 до 20 кН, в компенсированной подвеске в зависимости от марки провода – в пределах 10-30 кН.

Струна

Струна – элемент цепной контактной подвески, с помощью которого один из ее проводов (как правило, контактный) подвешивается к другому – несущему тросу.
По конструкции различают: звеньевые струны, составленные из двух и более шар-нирно связанных звеньев жесткой проволоки; гибкие струны из гибкого провода или капронового каната; жесткие – в виде распорок между проводами, применяемые значительно реже; петлевые – из проволоки или металлической полосы, свободно подвешенной на верхнем проводе и жестко или шарнирно закрепленной в струновых зажимах нижнего (обычно контактного); скользящие струны, закрепленные на одном из проводов и скользящие вдоль другого.
На отечественных ж. д. наибольшее распространение получили звеньевые струны из биметаллической сталемедной проволоки диаметром 4 мм. Недостатком их является электрический и механический износ в сочленениях отдельных звеньев. В расчетах эти струны не рассматриваются как токопроводящие. Такого недостатка лишены гибкие струны из медного или бронзового многожильного провода, жестко прикрепленные к струновым зажимам и выполняющие роль электрических соединителей, распределенных вдоль контактной подвески и не образующих существенных сосредоточенных масс на контактном проводе, что характерно для типовых поперечных электрических соединителей, используемых при звеньевых и других непроводящих ток струнах. Иногда применяют непроводящие струны контактной подвески из капронового каната, для крепления которых требуются поперечные электрические соединители.
Скользящие струны, способные перемещаться вдоль одного из проводов, используют в полукомпенсированных цепных контактных подвесках с малой конструктивной высотой, при установке секционных изоляторов, в местах анкеровки несущего троса на искусственных сооружениях с ограниченными вертикальными габаритами и в других особых условиях.
Жесткие струны обычно устанавливают только на воздушных стрелках контактной сети, где они выполняют роль ограничителя подъема контактного провода одной подвески относительно провода другой.

Усиливающий провод

Усиливающий провод – провод, электрически соединенный с контактной подвеской, служащий для снижения общего электрического сопротивления контактной сети. Как правило, усиливающий провод подвешивают на кронштейнах с полевой стороны опоры, реже – над опорами или на консолях вблизи несущего троса. Усиливающий провод применяют на участках постоянного и переменного тока. Снижение индуктивного сопротивления контактной сети переменного тока зависит не только от характеристик самого провода, но и от его размещения относительно проводов контактной подвески.
Применение усиливающего провода предусматривается на стадии проектирования; как правило, используется один или несколько многопроволочных проводов типа А-185.

Электрический соединитель

Электрический соединитель – отрезок провода с токопроводящей арматурой, предназначенный для электрического соединения проводов контактной сети. Различают поперечные, продольные и обводные соединители. Их выполняют из неизолированных проводов так, чтобы они не препятствовали продольным перемещениям проводов контактных подвесок.
Поперечные соединители устанавливают для параллельного соединения всех проводов контактной сети одного и того же пути (включая усиливающие) и на станциях для контактных подвесок нескольких параллельных путей, входящих в одну секцию. Поперечные соединители монтируют вдоль пути на расстояниях, зависящих от рода тока и доли сечения контактных проводов вобщем сечении проводов контактной сети, а также от режимов работы ЭПС на конкретных тяговых плечах. Кроме того, на станциях соединители размещают в местах трогания и разгона ЭПС.
Продольные соединители устанавливают на воздушных стрелках между всеми проводами контактных подвесок, образующих эту стрелку, в местах сопряжений анкерных участков – с двух сторон при неизолирующих сопряжениях и с одной стороны -при изолирующих сопряжениях и в других местах.
Обводные соединители применяют в тех случаях, когда требуется восполнить прерванное или уменьшившееся сечение контактной подвески из-за наличия промежуточных анкеровок усиливающих проводов или при включении в несущий трос изоляторов для прохода через искусственное сооружение.

Арматура контактной сети

Арматура контактной сети – зажимы и детали для соединения проводов контактной подвески между собой, с поддерживающими устройствами и опорами. Арматура (рис. 8.15) делится на натяжную (стыковые, концевые зажимы и др.), подвесную (струновые зажимы, седла и др.), фиксирующую (фиксирующие зажимы, держатели, ушки и др.), токопроводящую, механически мало нагруженную (зажимы питающие, соединительные и переходные – от медных к алюминиевым проводам). Изделия, входящие в состав арматуры, в соответствии с их назначением и технологией производства (литье, холодная и горячая штамповка, прессование и др.) выполняют из ковкого чугуна, стали, медных и алюминиевых сплавов, пластмасс. Технические параметры арматуры регламентируются нормативными документами.

Тема: какое напряжение подаётся на контактную сеть железных дорог, электроснабжение ЖД.

ЖД транспорт потребляет около 7% электроэнергии, которая вырабатывается электрическими станциями России. В большинстве своём она тратится на движение поездов (их тягу), а также недвижимые объекты (депо, станции, мастерские и системы регулирования движения ЖД транспорта). Помимо этого, к системе электроснабжения железных дорог могут быть подсоединены вблизи неё расположенные населенные пункты (небольшие) и промышленные предприятия. Система электроснабжения железных дорог (электрифицированных) состоит из внешней части (электрические станции, трансформаторные электроподстанции, электросети и линии силовых электрических передач) и тяговой (тяговые подстанции и тяговая электросеть).

На электрических станциях (тепловых, атомных, водных) производят трехфазный переменный электрический ток величиной напряжения 6-21 кВ и стандартной частотой 50 Гц. Для передачи электроэнергии напряжение на подстанциях увеличивают до 750 кВ (величина зависит от расстояния между станцией и потребителем). Вблизи самих потребителей электрический энергии напряжение снижают до 110-220 кВ и выдают на районные электросети, к которым также подключены и тяговые электроподстанции железных дорог (электрифицированных) и электрические подстанции дорог с топливной (тепловой) тягой.

Любое нарушение нормального электроснабжения железных дорог приводит перебоям в запланированном движении подвижных составов. Для того чтобы качественно обеспечить надежное электропитание тяговой электросети ЖД транспорта, обычно, заранее предусматривают ее электрическое подключение к двум различным независимым друг от друга источникам электроэнергии. Иногда допускается электропитание от 2х одноцепных электроснабжающих линий либо одной двухцепной.

Участки электрической контактной сети запитывают от соседних тяговых электроподстанций. Это даёт возможность более равномерно нагружать тяговые электрические подстанции и контактную электросеть, что способствует понижению различных потерь электрической энергии в тяговой электрифицированной сети.

Как известно, в России на железных дорогах применяют 2 системы электроснабжения: переменного однофазного тока и постоянного. Электрическая тяга на переменном трехфазном токе не получила практического распространения, так как технически очень сложно изолировать (защитить) расположенные близко силовые провода двух различных фаз контактной электросети (третья фаза - сами рельсы).

Подвижной состав (электрический) обеспечивают специальными тяговыми электродвигателями постоянного тока, поскольку предлагаемые модели электродвигателей переменного тока не отвечают определённым требованиям по надёжности и мощности. По этой причине ЖД линии снабжают системой переменного однофазного тока, а на самих составах (локомотивах) ставят специальное электрооборудование, которое преобразует переменный однофазный ток в постоянный.

Регламентированы номинальные величины напряжения, подаваемые на токоприемники подвижного электрического состава: 25 кВ - при переменном токе и 3 кВ - при постоянном. При этом имеются допустимые колебания электрического напряжения: при переменном токе - 21-29 кВ и при постоянном - 2,7-4 кВ. На определённых участках может допускаться уровень электрического напряжения не менее 19 кВ при переменном токе и 2,4 кВ при постоянном.

На электрифицированных железных дорогах, работающие на постоянном токе, силовые тяговые электроподстанции выполняют 2 задачи: снижают напряжение трехфазного тока и трансформируют его в постоянный. Всё электрооборудование, которое подаёт переменный электрический ток, располагается на открытом пространстве, а силовые выпрямители и дополнительные системы - в закрытых помещениях. От тяговых электроподстанций энергия поступает в контактную электросеть по запитывающей линии, который называется фидером.

P.S. Электроснабжение ЖД обусловлено своими особенностями в силу специфики самого этого транспорта. На различных участках и для различных транспортных средств рациональнее использование своего типа электрического тока и величины напряжения. Именно этим достигается максимальная эффективности и надёжность электроснабжения железнодорожного транспорта.

Комплекс устройств для передачи электроэнергии от тяговых подстанций к ЭПС через токоприёмники. Контактная сеть является частью тяговой сети и для рельсового электрифицированного транспорта обычно служит её фазой (при переменном токе) или полюсом (при постоянный токе); другой фазой (или полюсом) служит рельсовая сеть.
Контактная сеть может быть выполнена с контактным рельсом или контактной подвеской. Ходовые рельсы впервые были использованы для передачи электроэнергии движущемуся экипажу в 1876 русским инженером Ф. А. Пироцким. Первая контактная подвеска появилась в 1881 в Германии.
Основным элементами контактной сети с контактной подвеской (часто наз. воздушной) являются провода контактной сети (контактный провод, несущий трос, усиливающий провод и пр.), опоры, поддерживающие устройства (консоли, гибкие поперечины и жёсткие поперечины) и изоляторы. Контактные сети с контактными подвесками классифицируют: по виду электрифицированного транспорта, для которого контактная сеть предназначена,- магистрального, в т. ч. высокоскоростного, ж.-д., трамвая и карьерного транспорта, рудничного подземного транспорта и др.; по роду тока и номинальном напряжению питающегося от контактной сети ЭПС; по размещению контактной подвески относительно оси рельсового пути-для центрального (магистральный железнодорожный транспорт) или бокового (промышленный транспорт) токосъёма; по типам контактной подвески - контактные сети с простой, цепной или специальной подвеской; по особенностям выполнения - контактные сети перегонов, станций, для искусств, сооружений.
В отличие от др. устройств электроснабжения контактная сеть не имеет резерва. Поэтому к надёжности контактной сети предъявляют повышенные требования, с учётом которых осуществляются проектирование, строительство и монтаж, техническое обслуживание контактной сети и ремонт контактной сети.
Выбор общей площади сечения проводов контактная сеть обычно осуществляется при проектировании системы тягового электроснабжения. Все остальные вопросы решаются с помощью теории контактная сеть- самостоятельной научной дисциплины, становлению которой во многом способствовали работы сов. учёного И. И. Власова. Основан вопросами проектирования контактная сеть являются: выбор числа и марок её проводов в соответствии с результатами расчётов системы тягового электроснабжения, а также тяговых расчётов, выбор типа контактной подвески в соответствии с макс, скоростями движения ЭПС и др. условиями токосъёма; определение длины пролёта (главным образом по условию обеспечения её ветроустойчивости); выбор типов опор и поддерживающих устройств для перегонов и станций; разработка конструкций контактная сеть в искусств, сооружениях; размещение опор и составление планов контактная сеть станций и перегонов с согласованием зигзагов проводов и с учётом выполнения воздушных стрелок и элементов секционирования контактной сети (изолирующих сопряжений анкерных участков, секционных изоляторов и разъединителей). При выборе методов строительства и монтажа контактная сеть в ходе электрификации железных дорог стремятся, чтобы они в возможно меньшей степени отражались на перевозочном процессе при безусловном обеспечении высокого качества работ.
Основным производств, предприятия по сооружению контактной сети- строительно-монтажные поезда и электромонтажные поезда. Организация и методы технического обслуживания и ремонта контактной сети выбираются из условий обеспечения заданного высокого уровня надёжности контактной сети при наименьших трудовых и материальных затратах, безопасности труда работников районов контактной сети, возможно меньшего влияния на организацию движения поездов. Производств, приятием по эксплуатации контактной сети является дистанция электроснабжения.
Основные размеры (см. рис.), характеризующие размещение контактной сети относительно других пост, устройств ж. д.,- высота Н подвешивания контактного провода над уровнем верха головки рельса;


Основные элементы контактной сети и размеры, характеризующие её размещение относительно других постоянных устройств магистральных железных дорог: Пкс - провода контактной сети; О - опора контактной сети; И - изоляторы.
расстояние А от частей, находящихся под напряжением, до заземлённых частей сооружений и подвижного состава; расстояние Г от оси крайнего пути до внутреннего края опор контактной сети на уровне головок рельсов.
Совершенствование конструкций контактной сети направлено на повышение её надёжности при снижении стоимости строительства и эксплуатации. Ж.-б. опоры контактной сети и фундаменты металлической опор выполняются с учётом электрокоррозионного воздействия на их арматуру блуждающих токов. Увеличение срока службы контактного провода достигается, как правило, применением на токоприёмниках угольных контактных вставок.
При техническом обслуживании контактной сети на отечественных ж. д. без снятия напряжения используют изолирующие съёмные вышки, монтажные автомотрисы. Перечень работ, выполняемых под напряжением, был расширен благодаря применению двойной изоляции на гибких поперечинах, в анкерах проводов и др. элементах контактной сети Многие контрольные операции осуществляются средствами ихнего диагностирования, которыми оснащены вагоны-лаборатории. Оперативность переключений секционных разъединителей контактной сети значительно возросла благодаря применению телеуправления. Увеличивается оснащённость дистанций электроснабжения специализированным механизмами и машинами для ремонта контактной сети (например, для рытья котлованов и установки опор).
Повышению надёжности контактных сетей способствуют использование разработанных в нашей стране методов плавки гололёда, в т. ч. без перерыва движения поездов, электрорепеллентной защиты, ветроустойчивой ромбовидной контактной подвески и др. Для определения числа районов контактных сетей и границ участков обслуживания пользуются понятиями эксплуатационной длины и развёрнутой длины электрифицированных путей, равной сумме длин всех анкерных участков контактных сетей в заданных пределах. На отечественных железных дорог развёрнутая длина электрифицированных путей является учётным показателем для районов К. е., дистанций электроснабжения, отделений дорог, и более чем в 2,5 раза превышает эксплуатационных длину. Определение потребности в материалах на ремонтно-эксплуатационные нужды контактных сетей производится по её развёрнутой длине.

Контактной сетью называется специальная линия электропередачи, служащая для подвода электрической энергии к электроподвижному составу. Специфической ее особенностью является то, что она должна обеспечивать токосъем движущимся электровозам. Второй специфической особенностью контактной сети является то, что она, не может иметь резерва. Это обуславливает повышенные требования к надежности ее работы.
Контактная сеть состоит из контактной подвески пути, опор контактной сети, поддерживающих и фиксирующих в пространстве проводов контактной сети устройств. В свою очередь, контактная подвеска образуется системой проводов – несущего троса и контактных проводов. Для системы тяги постоянного тока имеется, как правило, два контактных провода в подвеске и один для системы тяги переменного тока. На рис. 6 приведен общий вид контактной сети.

Тяговая подстанция снабжает электроэнергией электроподвижной состав через контактную сеть. В зависимости от соединения контактной сети с тяговыми подстанциями и между контактными подвесками других путей многопутного участка в границах отдельной межподстанционной зоны различают следующие схемы: а) раз дельную двустороннюю;

Рис. 1. Общий вид контактной сети

б) узловую; в) параллельную.


а)

в)
Рис. 2. Основные схемы питания контактных подвесок путей а) – раздельная; б) – узловая; в) – параллельная. ППС- пункты параллельного соединения контактных подвесок различных путей; ПС – пост секционирования; ТП – тяговая подстанция

Раздельная двусторонняя схема – схема питания контактных подвесок, при которой энергия в контактную сеть поступает с двух сторон, (смежные тяговые подстанции работают параллельно на тяговую сеть), однако между собой контактные подвески электрически не соединяются в границах межподстанционной зоны. Область применения такой схемы – питание участков электрической железной дороги с непротяженными межподстанционными зонами и сравнительно равномерным электропотреблением по направлениям.
Узловая схема – схема, отличающаяся от предыдущей наличием электрической связи между подвесками путей. Такая связь осуществляется при помощи так называемых постов секционирования контактной сети. Техническое оснащение постов секционирования контактной сети позволяет в случае необходимости устранять не только поперечную связь между подвесками путей, но и продольную, разбивая контактную сеть в границах межподстанционной зоны на отдельные электрически не связанные между собой секции. Это существенно повышает надежность работы системы тягового электроснабжения. С другой стороны наличие узла в нормальных режимах позволяет более эффективно использовать контактные сети путей для передачи электрической энергии к электроподвижному составу, что дает существенную экономию энергии при неравномерном электропотреблении по направлениям. Следовательно, область применения такой подвески – участки электрической железной дороги с протяженными межподстанционными зонами и значительной неравномерностью электропотребления по направлениям.
Параллельная схема – схема, отличающаяся от узловой схемы большим числом электрических узлов между контактными подвесками путей. Применяется при еще большей неравномерности потребления электроэнергии по путям. Такая схема особенно эффективна при вождении тяжелых поездов.

УСТРОЙСТВА ЭЛЕКТРОСНАБЖЕНИЯ

В систему электрифицированных железных дорог России (рис.1) входят сооружения и устройства, составляющие ее внешнюю часть (тепловые, гидравлические и атомные электростанции, линии электропередачи) и тяговую часть (тяговые подстанции, контактная сеть, рельсовая цепь, питающая и отсасывающая линии).

Рис.1 «Общий вид электрифицированной ж.д.постоянного тока и питающих её устройств: 1- электростанция; 2 – повышающий трансформатор; 3 – высоковольтный выключатель; 4 – линия электропередачи; 5 – тяговая подстанция; 6 – блок быстродействующих выключателей и разъединителей; 7 – отсасывающая линия; 8 – питающая линия; 9 – выпрямитель; 10 – тяговый трансформатор; 11 – высоковольтный выключатель; 12 – разрядник.

Электростанции вырабатывают трехфазный ток напряжением 220-380 В, который затем повышают на подстанциях для передачи на большие расстояния.

Вблизи мест потребления электроэнергии напряжение понижают на трансформаторных подстанциях до 220 кВ и подают в районные сети высокого напряжения, к которым подключены потребители электроэнергии, в том числе и тяговые подстанции электрифицированных железных дорог, питающие контактную сеть.

Электрифицированные железные дороги России работают на постоянном или однофазном переменном токе.

Относительно низкое напряжение является основным недостатком системы постоянного тока. Для поддержания нужного уровня напряжения на токоприемниках локомотивов тяговые подстанции размещают на расстоянии 10-25 км. На линиях с большой грузонапряженностью и интенсивным пассажирским движением приходится не только уменьшать расстояние между подстанциями, но и увеличивать сечение контактной сети (подвешивают дополнительный контактный провод).



Тяговые подстанции переменного тока служат только для понижения напряжения переменного тока, получаемого от электросетей, до 27,5 кВ.

Контактная сеть предназначена для передачи электрической энергии, получаемой от тяговых подстанций к электроподвижному составу и должна обеспечивать надежный токосъем при наибольших скоростях движения в любых атмосферных условиях.

Существуют различные конструкции контактной сети для наземного электрического транспорта и метрополитенов. На наших железных дорогах принята конструкция (рис.2), основными элементами которой являются опоры; контактная подвеска, состоящая из несущего троса, контактных и усиливающих проводов; консоли, фиксаторы и т.д.

Рис.2 Устройство контактной сети на двухпутном перегоне: 1 – несущий трос; 2 – контактный провод; 3 – усиливающий провод; 4 – струна; 5 – фиксатор; 6 – консоль; 7 – опора.

Рис.3 Цепная одинарная подвеска: 1 – консоль; 2 – несущий трос; 3 – струны; 4 – изолятор; 5 – контактный провод; 6 – фиксатор.

Опоры железобетонные или металлические располагаются вдоль железнодорожного пути на расстоянии 65-80 м друг от друга.

Консоли укреплены в верхней части опор. К ним на изоляторах подвешен медный или биметаллический несущий трос.

Контактный провод изготовлен из меди и с помощью струн подвешен к биметаллическому или медному несущему тросу. Расстояние между струнами обычно составляет 6-12 м.

На прямых участках пути контактные провода расположены в плане зигзагообразно относительно оси пути на 300 мм в каждую сторону (рис.4). Это необходимо для обеспечения равномерного износа накладок токоприемников электроподвижного состава.

Рис.4 Расположение контактного провода на прямых участках

Такое расположение контактного провода осуществляется с помощью фиксаторов, размещенных на каждой опоре. Фиксаторы также препятствуют раскачиванию контактной сети от бокового ветра.

Для уменьшения стрел провеса контактного провода при сезонном изменении температуры его оттягивают к опорам, которые называются анкерными, и через систему блоков и изоляторов к ним подвешивают грузовые компенсаторы (рис.5.).

Рис.5 Сопряжение анкерных участков: 1,4 – анкерные опоры; 2,3 – переходные опоры; I, II – контактные подвески сопрягаемых анкерных участков

Высота подвески контактного провода над уровнем верха головки рельса должна быть не менее 5750 мм и не превышать 6800 мм.

Для надежной работы контактной сети и удобства обслуживания ее делят на отдельные участки (секции) с помощью воздушных промежутков и нейтральных вставок (изолирующих сопряжений), а также секционных и врезных изоляторов.

При проходе токоприемника электроподвижного состава по воздушному промежутку он кратковременно электрически соединяет обе секции контактной сети. Если по условиям питания секций это недопустимо, то их разделяют нейтральной вставкой, которая состоит из нескольких последовательно включенных промежутков (рис.6).

Рис.6 Нейтральная вставка: 1 – дополнительная контактная подвеска; 2,3 – секционные разъединители; 4,5 – предупредительные сигналы; I,II – контактные подвески сопрягаемых анкерных участков.

Применение таких вставок необходимо на участках переменного тока, когда смежные секции питаются от разных фаз трехфазного тока. Длина нейтральной вставки устанавливается с таким расчетом, чтобы при любых положениях поднятых токоприемников электроподвижного состава полностью исключалось одновременное замыкание контактных проводов нейтральной вставки с проводами прилегающих к ней секций контактной сети.

3.2 ХОЗЯЙСТВО ЭЛЕКТРОСНАБЖЕНИЯ ЖЕЛЕЗНЫХ ДОРОГ.ОРГАНИЗАЦИЯ УПРАВЛЕНИЯ И ПРЕДПРИЯТИЯ ЭЛЕКТРОСНАБЖЕНИЯ

Руководство отраслью электроснабжения всех железных дорог и промышленных предприятий железнодорожного транспорта осуществляет Департамент электрификации и электроснабжения ОАО «РЖД» . Главными задачами Департамента являются обеспечение бесперебойной работы устройств электроснабжения, развитие базы электроснабжения, разработка планов электрификации железных дорог.

Департамент осуществляет оперативное и техническое руководство службами электроснабжения железных дорог, важнейшей задачей которых является бесперебойное снабжение электрической энергией электрифицированных участков дороги и потребителей электрической энергии во всех отраслях хозяйства дороги, а также всех других потребителей, подключенных к электросетям дороги.

Свою деятельность службы осуществляют через линейные предприятия - дистанции электроснабжения.

В функции дистанций электроснабжения входят:

· прием электрической энергии от единой электрической сети страны и подача ее в контактную сеть;

Железнодорожный транспорт на электрической тяге является наиболее производительным, экономичным и экологически безопасным. Поэтому с середины XX века и по настоящее время ведется активная работа по переводу железнодорожных магистралей на электрическую тягу. В настоящее время более 50 % железных дорог России являются электрифицированными. Кроме того, даже неэлектрифицированные участки железных дорог испытывают потребность в электрической энергии: она используется для целей обеспечения функционирования систем сигнализации, централизации, связи, освещения, работы вычислительной техники и т.д.

Электрическая энергия в России вырабатывается, являющимися предприятиями энергетической отрасли. Железнодорожный транспорт потребляет около 7% электроэнергии, производимой в нашей стране. Она расходуется на обеспечение тяги поездов и питание нетяговых потребителей, к которым относятся железнодорожные станции с их инфраструктурой, устройства локомотивного, вагонного и путевого хозяйства, а также устройтсва регулирования движения поездов. К системе электроснабжения железной дороги могут быть подключены расположенные вблизи нее небольшие предприятия и населенные пункты.

Согласно п. 1 Приложения № 4 к ПТЭ на железнодорожном транспорте должно быть обеспечено надежное электроснабжение электрического подвижного состава, устройств СЦБ, связи и вычислительной техники как потребителей электрической энергии I категории , а также других потребителей в соответствии с установленной для них категорией.

состоит из внешней сети (электростанции , трансформаторные подстанции , линии электропередачи ) и внутренних сетей (тяговая сеть , линии электроснабжения устройств СЦБ и связи , осветительная сеть и др.).

На вырабатывается трехфазный переменный электрический ток напряжением 6...21 кВ частотой 50 Гц. Для передачи электрической энергии к потребителям напряжение на повышают до 250…750 кВ и передают на большие расстояния с помщью (ЛЭП ). Вблизи мест потребления электроэнергии напряжение понижают до 110 кВ с помощью и подают в районные сети, к которым наряду с другими потребителями подключены электрифицированных железных дорог и, питающие нетяговые потребители, ток которым поступает по напряжением 6...10 кВ.

Назначение и виды тяговых сетей

предназначена для обеспечения электрической энергией электрического подвижного состава. Она состоит из контактных и рельсовых проводов , представляющих собой соответственно питающую и отсасывающую линии . Участки тяговой сети делят на секции (секционируют ) и подсоединяют к соседним. Это позволяет более равномерно загружать подстанции и контактную сеть, что в целом способствует снижению потерь электроэнергии в тяговой сети.

На железных дорогах России используют две системы тягового тока: постоянного и однофазного переменного .

На железных дорогах, электрифицированных на постоянном токе , выполняют две функции: понижают напряжение подводимого трехфазного тока с помощью и преобразуют его в постоянный с помощью. От тяговой подстанции электричество через защитный быстродействующий выключатель подается в контактную сеть по - фидеру , а из рельсов возвращается обратно на тяговую подстанцию по.

Основными недостатками системы электроснабжения постоянного тока являются его постоянная полярность, относительно низкое напряжение в контактном проводе и утечки тока из-за отсутствия возможности обеспечить полную электроизоляцию верхнего строения пути от нижнего (""). Рельсы, служащие проводниками тока одной полярности, и земляное полотно представляют собой систему, в которой возможна электрохимическая реакция, приводящая к коррозии металла. В результате снижается срок службы рельсов и металлических конструкций, расположенных возле железнодорожного полотна. Для снижения этого эффекта применяют специальные защитные устройства - катодные станции и анодные заземлители .

Из-за относительно низкого напряжения в системе постоянного тока для получения необходимой мощности тягового подвижного состава (W=UI ) по тяговой сети должен протекать ток большой силы. Для этого тяговые подстанции размещают недалеко друг от друга (через каждые 10...20 км) и увеличивают площадь сечения, иногда применяя двойной и даже тройной контактный провод.

При электрификации на переменном токе по контактной сети передается требуемая мощность при бóльшем напряжении (25 кВ ) и, соответственно, меньшей силе тока по сравнению с системой постоянного тока. Тяговые подстанции в этом случае располагаются на расстоянии 50...70 км друг от друга. Их техническое оснащение проще и дешевле, чем у тяговых подстанций постоянного тока (отсутстсвуют выпрямители). Кроме того, сечение проводов контактной сети примерно в два раза меньше, что позволяет существенно экономить дорогостящую медь. Однако конструкция локомотивов и электропоездов переменного тока сложнее, а их стоимость выше.

Стыкование контактных сетей линий, электрифицированных на постоянном и переменном токе, осуществляют на специальных железнодорожных станциях - . На таких станциях имеется электрическое оборудование - , позволяющие на одни и те же участки станционных путей подавать как постоянный, так и переменный ток. Работа таких устройств взаимоувязывается с работой устройств централизации и сигнализации. Устройство станций стыкования требует больших капиталовложений. Когда создание таких станций представляется нецелесообразным, применяют двухсистемные и, работающие на обоих родах тока. При использовании такого ЭПС переход с одного рода тока на другой может происходить во время движения поезда по перегону.

Устройство контактной сети

Контактная сеть - это совокупность проводов, поддерживающих конструкций и другого оборудования, обеспечивающих передачу электрической энергии от тяговых подстанций к электрического подвижного состава. Основным требованием к конструкции контактной сети является обеспечение надежного постоянного контакта провода с токоприемником независимо от скорости движения поездов, климатических и атмосферных условий. В контактной сети нет дублируемых элементов, поэтому ее повреждение может повлечь за собой серьезное нарушение установленного графика движения поездов.

В соответствии с назначением электрифицированных путей используют простые и цепные воздушные контактные подвески . На второстепенных станционных и деповских путях при сравнительно небольшой скорости движения может применяться ("трамвайного " типа), представляющая собой свободно висящий натянутый провод, который закреплен с помощью изоляторов на опорах, расположенных на расстоянии 50…55 м друг от друга.

При высоких скоростях движения провисание контактного провода должно быть минимальным. Это обеспечивается конструкцией, в которой контактный провод между опорами прикреплен к несущему тросу с помощью часто расположенных проволочных струн . Благодаря этому расстояние между поверхностью головки рельса и контактным проводом остается практически постоянным. Для цепной подвески в отличие от простой требуется меньше опор: они располагаются на расстоянии 65...70 м друг от друга. На скоростных участках применяют, в которой к несущему тросу на струнах подвешивают вспомогательный провод , к которому также струнами крепят контактный провод. В горизонтальной плоскости контактный провод расположен относительно оси пути с отклонением у каждой опоры на ±300 мм. Благодаря этому обеспечиваются его ветроустойчивость и равномерное изнашивание контактных пластин токоприемников. Для уменьшения провисания контактного провода при сезонном изменении температуры его оттягивают к опорам, которые называются, и через систему к ним подвешивают. Наибольшая длина участка между анкерными опорами (анкерного участка ) устанавливается с учетом допустимого натяжения изношенного контактного провода и на прямых участках пути достигает 800 м.

Контактный провод изготавливают из твердотянутой электролитической меди сечением 85 , 100 или 150 мм 2 . Для удобства крепления проводов с помощью зажимов используют МФ .

Для надежной работы контактной сети и удобства обслуживания ее делят на отдельные участки - секции с помощью воздушных промежутков и нейтральных вставок , а также.

При проходе токоприемника электроподвижного состава по он своим полозом кратковременно электрически соединяет обе секции контактной сети. Если по условиям питания секций это недопустимо, то их разделяют, которая состоит из нескольких расположенных последовательно воздушных промежутков. Применение нейтральных вставок обязательно на линиях, электрифицированных на переменном токе, т.к. соседние секции контактной сети могут питаться от разных фаз, приходящих с электростанции, электрическое соединение которых друг с другом недопустимо. Проследовать ЭПС должен в режиме выбега и с выключенными вспомогательными машинами. Для ограждения мест секционирования контактной сети применяются специальные сигнальные знаки "", устанавливаемые на опорах контактной сети.

Соединение или разъединение секций осуществляется посредством, размещаемых на опорах контактной сети. Управление разъединителями может осуществляться как дистанционно с помощью установленного на опоре электропривода , связанного с пультом энергодиспетчера, так и вручную с помощью ручного привода , .

Схема оснащения контактными проводами станционных путей зависит от их назначения и типа станции. Над стрелочными переводами контактная сеть имеет так называемые, образуемые пересечением двух контактных подвесок.

На магистральных железных дорогах применяют и опоры контактной сети . Расстояние от оси крайнего пути до внутреннего края опор на прямых участках должно быть не менее 3100 мм . В особых случаях на электрифицируемых линиях допускается сокращение указанного расстояния до 2450 мм - на станциях и до 2750 мм - на перегонах. На перегонах в основном применяют индивидуальную консольную подвеску контактного провода . На станциях (а в некоторых случаях и на перегонах) применяется групповая подвеска контактных проводов на и поперечинах .

Для защиты контактной сети от короткого замыкания между соседними тяговыми подстанциями располагают, оборудованные защитными выключателями . Все металлические конструкции, непосредственно взаимодействующие с элементами контактной сети или находящиеся в радиусе 5 м от них, заземляют (соединяют с рельсами). На линиях, электрифицированных на постоянном токе, применяют специальные диодные и искровые. Для защиты элементов и оборудования контактной сети от перенапряжений (например, вследствие удара молнии) на некоторых опорах устанавливают, имеющие дугогасительные рога .

Для электрической изоляции элементов контактной сети, находящихся под напряжением (контактного провода, несущего троса, струн, фиксаторов), от заземленных элементов (опор, консолей, поперечин и пр.) применяются. По выполняемым функциям изоляторы бывают подвесные , натяжные , фиксаторные , консольные , по конструкции - тарельчатые и стержневые , а по материалу, из которого они изготовлены - , и.

На электрифицированных железных дорогах по рельсам проходит обратный тяговый ток . Для сокращения потерь электроэнергии и обеспечения нормального режима работы устройств автоматики и телемеханики на таких линиях предусматривают следующие особенности устройства верхнего строения пути:

  • к головкам рельсов с наружной стороны колеи приваривают (шунты), снижающие электрическое сопротивление рельсовых стыков;
  • рельсы изолируют от шпал с помощью резиновых прокладок в случае применения железобетонных шпал и пропиткой деревянных шпал креозотом;
  • используют щебеночный балласт, обладающий хорошими диэлектрическими свойствами, а между подошвой рельса и балластом обеспечивают зазор не менее 3 см;
  • на линиях, оборудованных автоблокировкой и электрической централизацией, применяют изолирующие стыки, а для того чтобы пропускать тяговый ток в обход них, устанавливают или частотные фильтры .

Станции стыкования переменного и постоянного тока

Один из способов стыкования линий, электрифицированных на разных родах тока - это секционирование контактной сети с переключением отдельных секций на питание от фидеров постоянного или переменного тока. Контактная сеть станций стыкования имеет группы изолированных секций: постоянного тока, переменного тока и переключаемые. В переключаемые секции подается электроэнергия через. Контактную сеть с одного рода тока на другой переключают специальными с моторными приводами, устанавливаемыми на пунктах группировки. К каждому пункту подведены две питающие линии: переменного и постоянного тока от тяговой подстанции постоянно-переменного тока. Фидеры соответствующего рода тока этой подстанции подключают также к контактной сети горловин станции стыкования и прилегающих перегонов.

Для исключения возможности подачи на отдельные секции контактной сети тока, не соответствующего находящемуся там подвижному составу, а также выезда ЭПС на секции контактной сети с другой системой тока переключатели блокируют друг с другом и с устройствами электрической централизации . Управление переключателями включают в единую систему маршрутно-релейной централизации управления стрелками и сигналами станции. Дежурный по станции, собирая какой-либо маршрут, одновременно с установкой стрелок и сигналов в требуемое положение производит соответствующие переключения в контактной сети.

Маршрутная централизация на станциях стыкования имеет систему счета заезда и выезда электроподвижного состава на участки пути переключаемых секций контактной сети , что предотвращает попадание его под напряжение другого рода тока. Для защиты оборудования устройств электроснабжения и электроподвижного состава постоянного тока при попадании на них в результате каких-либо нарушений напряжения переменного тока имеется специальная аппаратура.

Требования к устройствам электроснабжения

Устройства электроснабжения должны обеспечивать надежное электроснабжение:

  • электроподвижного состава для движения поездов с установленными весовыми нормами, скоростями и интервалами между ними при требуемых размерах движения;
  • устройств СЦБ, связи и вычислительной техники как потребителей электрической энергии I категории;
  • всех остальных потребителей железнодорожного транспорта в соответствии с установленной категорией.

К устройствам электроснабжения тягового подвижного состава предъявляются описанные выше требования в отношеннии и .

Резервные источники электроснабжения усройств СЦБ должны быть в постоянной готовности и обеспечивать бесперебойную работу устройств СЦБ и переездной сигнализации в течение не менее 8 ч при условии, что питание не отключалось в предыдущие 36 ч. Время перехода с основной системы электроснабжения на резервную или наоборот не должно превышать 1,3 с.

Для обеспечения надежного электроснабжения должны проводиться периодический контроль состояния сооружений и устройств электроснабжения, измерение их параметров, приборами диагностики и осуществляться плановые ремонтные работы.

Устройства электроснабжения должны защищаться от токов короткого замыкания, перенапряжений и перегрузок сверх установленных норм.

Металлические подземные сооружения (трубопроводы, кабели и т.п.), а также металлические и железобетонные конструкции, находящиеся в районе линий, электрифицированных на постоянном токе, должны быть защищены от электрической коррозии.

В пределах искусственных сооружений расстояние от токонесущих элементов токоприемника и частей контактной сети, находящихся под напряжением, до заземленных частей сооружений и подвижного состава должно быть не менее 200 мм на линиях, электрифицированных на постоянном токе, и не менее 270 мм - на переменном токе.

С целью безопасности обслуживающего персонала и других лиц, а также для улучшения защиты от токов короткого замыкания заземляют или оборудуют устройствами защитного отключения металлические опоры и элементы, к которым подвешена контактная сеть, а также все металлические конструкции, расположенные ближе 5 м от частей контактной сети, находящихся под напряжением.

Карелин Денис Игоревич ® Орехово-Зуевский железнодорожный техникум имени В.И.Бондаренко "2017

Интернет на Андроиде