Ремонт и модернизация светодиодных фонарей Lentel, Фотон, Smartbuy Colorado и RED своими руками. Как отремонтировать фонарь на светодиодах? Схема китайского фонарика с зарядкой от сети Зарядное устройство для фонаря 2913 своими руками

У меня есть налобный фонарик, должен сказать, очень удобный. Однако его родное зарядное устройство было настолько «высококачественным», что не дожило до второй зарядки. А пользоваться фонарем, в связи с уменьшением светового дня придется все чаще. Необходимо срочно соорудить зарядное устройство для аккумулятора фонаря.

Итак, все началось с этого фонарика.

Вскрыв его мы обнаруживаем аккумулятор вот с такими характеристиками.

Стандартное зарядное сюда не подойдет.

Поискав в закромах Родины, я нашел кучу зарядных от телефонов и блок питания не знаю от чего. Поскольку гнезд под телефонные разъемы у меня нет, то за основу возьмем блок питания.

По току он немного великоват, но на безрыбье и садовник — горничная:). Для изготовления футляра мне понадобилось: труба пластиковая (по диаметру), крышки от пластиковых бутылок, пружинка от автоматической ручки, чуток провода, подходящая к разъему блока питания «мама» и шурупы.

По конструкции все и так понятно, однако хочу отдельно сказать о пружинке.

Ее мы откусываем с тем учетом, что она должна сесть на шуруп и в то же время при установке аккумулятора не изгибаться. Собираем все на изоленту. Проверяем полярность. Наносим + и -, дабы не попутать в будущем. Загружаем аккумулятор и подключаем к блоку питания. У меня сразу загорелся индикатор питания.

Включаем сеть и заряжаем наш аккумулятор. Единственное, что необходимо помнить о уменьшенном времени зарядки. Ну, и том, что на таком режиме зарядки аккумулятор может не отработать свой ресурс. Но как выход из ситуации — можно, если осторожно 🙂 .

Итого, за полчаса времени и минимума средств, имеем аварийную зарядку для нестандартного аккумулятора.

Такого изобилия форм, размеров, расцветок нет, пожалуй, ни в какой другой группе товаров. Дома их уже не меньше пяти штук, но купил ещё один. И вовсе не из любопытства, посмотрел на него и воображение нарисовало картинку как в тёмное время суток включаю боковую панель, прикрепляю торцевой частью с магнитом к металлической гаражной двери, и при свете, не занятыми руками открываю замки. Сервис - «пять звёздочек»! Вот только фонарь предлагалось купить в нерабочем состоянии.

Характеристики фонарика STE-15628-6LED

  • 6 светодиодов (3 в отражателе + 3 в боковой панели)
  • 2 режима работы
  • встроенное ЗУ
  • магнит для крепления
  • размеры: 11х5х5 см

Внешне абсолютно исправное и привлекательное изделие не создавало светового потока. Ну, разве возможно чтобы вот такая замечательная вещица была совершенно не на что не годной? Данная модель была в единственном экземпляре, но любитель электроники во мне «вещал», что всё преодолимо.

Провод оторвался при вскрытии корпуса, а вот опалённой пластмасса уже была и наводила на мысль, что подгорели электронные компоненты схемы зарядного устройства, а аккумулятор может быть и вполне исправным.

С него и начал проверку. Напряжение на клеммах вольтметр показал равным одному вольту. Имея уже некоторый опыт общения с такими аккумуляторами начал с того, что открыл на нём верхнюю предохранительную планку, снял резиновые колпачки, долил в каждую «банку» по одному кубику дистиллированной воды и поставил на зарядку. Зарядное напряжение 12 В, ток 50 мА.

Зарядка в режиме повышенного напряжения (вместо штатных 4,7 В) длилась два часа, в наличии более 4 вольт.

Раз аккумулятор годный к эксплуатации то ему нужно зарядное устройство, собранное по более приличной схеме и на более надёжных электронных компонентах, нежели чем от китайского производителя, в котором «сгорел» резистор на входе, был пробит один из двух диодов 1N4007 выпрямителя и дымился при включении ЗУ резистор светодиода. В первую очередь необходимы надёжный конденсатор не менее чем на 400 вольт, диодный мост и подходящий стабилитрон на выходе.

Схема ЗУ фонаря

Составленная схема показала свою работоспособность, конденсатор ёмкостью в 1 мкФ и 400 В нашёл МБГО (куда ещё надёжней и в предполагаемый корпус вписывается удачно), диодный мост собран из 4 штук диодов 1N4007, стабилитрон на пробу взял первый попавшийся импортный (напряжение стабилизации определил приставкой к мультиметру, а вот название его прочитать не представилось возможным).

Далее схема была собрана при помощи пайки и использована для производства нормально цикла заряда, предварительно разряженного аккумулятора (миллиамперметр с шунтом, так что в действительности полное отклонение стрелки происходит при токе в 50 мА). Стабилитрон применён уже с напряжением стабилизации 5 В.

Печатная плата для окончательной сборки ЗУ с размерами под корпус зарядки от сотового телефона. Лучшего варианта корпуса тут и не придумать.

Вид реально собранной, работоспособной платы. Корпус конденсатора приклеен к плате клеем «мастер». А вот травить платку поленился, винюсь, случайно оказалась под рукой б/у практически нужного размера и это обстоятельство всё решило.

Зато не поленился заменить информационную наклейку на корпусе зарядки. При полностью заряженном аккумуляторе, в темноте, боковая панель вполне прилично освещает помещение размером 10 кв. метров, а свет от отражателя фары делает хорошо видимыми предметы на расстояние до 10 метров.

В дальнейшем предполагаю подобрать для фонаря более надёжный и . Автор - Babay из Barnaula.

В качестве образца возьмём аккумуляторный фонарик фирмы "ДиК", «Люкс» или «Космос» (см. на фото). Этот карманный фонарик, малогабаритный, удобный в руке и с достаточно большим рефлектором - 55,8 мм в диаметре, светодиодная матрица которого имеет 5 белых светодиодов, что обеспечивает хорошее и большое пятно освещения.

Кроме того форма фонарика всем знакома, а многим ещё с детства, одним словом - бренд. Зарядное устройство находится внутри самого фонарика, стоит только снять сзади крышку и воткнуть его в розетку. Но, ни что не стоит на месте и эта конструкция фонарика тоже претерпела изменений, особенно его внутренняя начинка. Последняя модель на данный момент - ДИК АН 0-005 (или ДиК-5 ЕВРО).

Более ранние версии - это ДИК АН 0-002 и ДИК АН 0-003 отличаются тем, что в них стояли дисковые аккумуляторы (3 шт), Ni-Cd серии Д-025 и Д-026, ёмкостью 250 мА/часов, или в модели АН 0-003 - сборка уже более новых аккумуляторов Д-026Д с большей емкостью, 320 мА/ч и лампочки накаливания на 3,5 или 2,5 В, с током потребления 150 и 260 мА соответственно. Светодиод, для сравнения, потребляет около 10 мА и даже матрица из 5 штук - это 50 мА.

Конечно, при таких характеристиках фонарик не мог долго светить, его максимум хватало на 1 час, особенно первые модели.

Что же такого есть в последней модели фонарика ДИК АН 0-005?

Ну во-первых - светодиодная матрица из 5 светодиодов, в отличие от 3-х или лампочки накаливания, что даёт значительно больше света при меньшем токе потребления, а второе - в фонарике стоит всего лишь 1 пальчиковый современный Ni-MH аккумулятор на 1,2-1,5 В и ёмкостью от 1000 до 2700 мА/ч.

Некоторые спросят, а как же пальчиковый аккумулятор на 1,2 В может «зажечь» светодиоды, ведь чтобы они ярко светили надо примерно 3,5 В? По этой причине в более ранних моделях ставили последовательно 3 аккумулятора и получали 3,6 В.

Но, тут уже не знаю кто первый придумал, китайцы или кто-то другой, сделать преобразователь (умножитель) напряжения с 1,2 В до 3,5 В. Схема простая, в китайских фонариках это всего лишь 2 детали - резистор и радиодеталь похожая на транзистор с маркировкой - 8122 или 8116, или SS510, или SK5B. SS510 - это диод Шоттки.

Светит такой фонарик хорошо, ярко, и что не маловажно - долго, а циклов заряд-разряд не 150, как в предыдущих моделях, а на много больше, что увеличивает срок службы в разы. Но!! Чтобы светодиодный фонарик служил долго, надо вставлять его в розетку с 220 В в выключенном состоянии! Если этого правила не придерживаться то при зарядке можно легко сжечь диод Шоттки (SS510), а часто заодно и светодиоды.

Мне однажды пришлось ремонтировать фонарик ДИК АН 0-005. Не знаю точно, что послужило причиной выхода его из строя, но предполагаю, что воткнули его в розетку и забыли на несколько суток, хотя по паспорту заряжать надо не более 20 часов. Короче - вышел из строя аккумулятор, потёк, и сгорело 3 светодиода из 5, плюс преобразователь (диод) тоже перестал работать.

Аккумулятор пальчиковый на 2700 мА/ч у меня был, остался от старого фотоаппарата, светодиоды тоже, а вот найти деталь - SS510 (диод Шоттки), оказалось проблематично. Этот светодиодный фонарик скорее всего китайского происхождения и такую деталь наверное можно купить только там. И тогда решил слепить преобразователь напряжения из тех деталей что есть, т.е. из отечественных: транзистора КТ315 или КТ815, в/ч трансформатора и других (см. схему).

Схема не нова, она давно уже существует, я её только использовал в этом фонарике. Правда, вместо 2 радиодеталей, как у китайцев, у меня получилось 3, зато дармовые.

Электрическая схема, как видите, элементарная, самая сложная вещь - это намотать ВЧ-трансформатор на ферритовом кольце. Кольцо можно использовать со старого импульсного блока питания, от компьютера, или от энергосберегающей нерабочей лампочки (см. фото).

Внешний диаметр ферритового кольца 10-15 мм, толщина примерно 3-4 мм. Надо намотать 2 обмотки по 30 витков проводом 0,2-0,3 мм, т. е. мотаем сначала 30 витков, затем делаем отвод от середины и ещё 30. Если ферритовое кольцо берёте с платы люминесцентной лампочки - лучше использовать 2 штуки, сложить их вместе. На одном кольце тоже схема будет работать, но свечение будет слабее.

Сравнивал 2 фонарика на свечение, оригинальный (китайский) и переделанный по выше указанной схеме - различий в яркости почти не увидел. Преобразователь, кстати, можно вставить не только в аккумуляторный фонарик, а и в обычный, который работает от батареек, тогда можно будет запитывать его всего от 1 батарейки 1,5 В.

Схема зарядного устройства фонарика изменений почти не претерпела, за исключением номиналов некоторых деталей. Ток зарядки примерно 25 мА. При зарядке, фонарь надо отключать! И не клацать выключателем во время зарядки, поскольку напряжение зарядки более чем в 2 раза выше напряжения аккумулятора, и если оно пойдёт на преобразователь и усилится - светодиоды частично или полностью придётся менять...

В принципе, по выше указанной схеме, светодиодный фонарик легко можно сделать и своими руками, вмонтировав его, например, в корпус какого-нибудь старого, даже самого древнего фонарика, а можно сделать корпус и самому.

А чтобы не менять структуру выключателя старого фонарика, где использовалась маленькая лампочка накаливания на 2,5-3,5 В нужно разбить уже сгоревшую лампочку и к цоколю, вместо стеклянной колбы, припаять 3-4 белых светодиода.

А также, для зарядки, вмонтировать разъём под сетевой шнур, от старого принтера или приёмника. Но, хочу заострить ваше внимание, если корпус фонарика металлический - зарядное устройство туда не монтируйте, а сделайте его выносным, т.е. отдельно. Совсем не сложно вынуть пальчиковый аккумулятор из фонарика и вставить его в ЗУ. И не забывайте всё хорошо изолировать! Особенно в тех местах, где присутствует напряжение 220 В.

Думаю, после переделки старый фонарик прослужит вам ещё не один год...

В последнее время широкое распространение получили аккумуляторные фонари конструктивно объединенные в одном корпусе с зарядным устройством. Которое позволяет заряжать данные фонари от сети переменного тока напряжением 220 Вольт. Для этого на корпусе фонаря есть специальные штыри, которые включаются в розетку для его зарядки.
Предлагаемое устройство позволяет заряжать данный тип фонарей не только от сети переменного тока 220 Вольт, но и от любого источника постоянного тока напряжением 9-18 Вольт, например от автомобильного аккумулятора. При этом вводить какие-либо конструктивные изменения в схему фонаря не требуется. Чтобы понять принцип действия данного устройства, рассмотрим типовую схему аккумуляторного фонаря.

Его схема состоит из “гасящего” конденсатора С1 определяющего ток заряда, однополупериодного выпрямителя на диодах VD1 и VD2. К выходу которого подключена аккумуляторная батарея GB1, напряжение с которой поступает через выключатель SA1 на лампу EL1, вместо которой может использоваться яркий светодиод. Резистор R1 обеспечивает быструю разрядку конденсатора С1 при отключении фонаря от сети. А светодиод HL1, подключенный через резистор R2, сигнализирует о включении фонаря в сеть.
Как известно, сопротивление конденсатора переменному тока зависит от его частоты. Чем выше частота, тем ниже сопротивление конденсатора. Таким образом, если подать на зарядные штыри фонаря напряжение частотой около 10 кГц вместо 50 Герц, то сопротивление “гасящего” конденсатора С1 упадёт на столько, что напряжения 9-18 Вольт будет вполне достаточно для зарядки аккумуляторной батареи фонаря.
Рассмотрим схему преобразователя напряжения для зарядки фонаря, от низковольтного источника тока, работающую по вышеописанному принципу.

Схема собрана на базе микросхемы интегрального усилителя низкой частоты TDA7052(DA1). Элементы С2, R1 и С3,R2 создают положительную обратную связь между входом и выходом усилителя. В результате этого, микросхема переходит в режим генерации импульсов частотой 10 кГц на выводах 5 и 8, которые противоположны по фазе. Амплитудное значение напряжения данных импульсов чуть меньше напряжения питания микросхемы. Эти импульсы через резистор R3 поступают на зарядные штыревые контакты фонаря, и обеспечивают зарядку его аккумуляторной батареи.
Схема собрана на печатной плате из фольгированного стеклотекстолита размером 20мм*35мм. Проводники на плате изготавливаются путем разрезания фольги на участки. Для этого на плате со стороны фольги прорезаются канавки, которые разделяют между собой токопроводящие участки на плате.(рис.3)
Плата с распаянными элементами.

Плата со стороны токопроводящих участков.

Устройство размещается в корпусе радио розетки от проводной радиосети. В эту же розетку и будет включаться фонарь для зарядки. Для этого, сначало печатную плату подключают к контактной колодки розетки.

Затем контактную колодку вместе с платой вставляют в корпус розетки.


Чтобы плата устройства поместилась в корпус розетки, вывода конденсаторов изгибают так, чтобы их корпуса оказались расположены параллельно печатной плате.
После этого в розетку преобразователя напряжения включают заряжаемый фонарь, а само устройство подключают источнику постоянного тока напряжением 9-16 Вольт. При этом на корпусе фонаря должен загорется светодиод индикатора зарядки, если он имеется в данной модели фонаря.

В качестве конденсатора С1 можно использовать любой малогабаритный электролитический конденсатор, С2 и С3 – К10-7в или аналогичные керамические. Резисторы R1, R2, R3 любого типа, например МЛТ или С2-23, указанной на схеме мощности.
Настройка устройства заключается в установке тока зарядки фонаря в зависимости от используемого в нем аккумулятора.
Изменение тока зарядки производиться подбором номиналов конденсаторов С2 и С3, и резисторов R1 и R2. При этом нужно соблюдать условие, равенства емкостей конденсаторо С2 и С3. А также равенства сопротивление R1 и R2. Более точную подгонку тока зарядки производят подбором номинала резистора R3. На время регулировки, вместо R3 можно установить подстроечный резистор сопротивлением 100 Ом. Максимальный ток зарядки, с указанной на схеме микросхемой DA1, может доходить до 0,08 Ампер.

Зарядное устройство предназначено для зарядки двух аккумуляторов по 1.25 вольта стабильным током. Схема устройства показана на рисунке.

В качестве стабилизатора тока используется отечественная микросхема КРЕН12А включенная соответствующим образом. Ток заряда фиксируется на уровне 250 миллиампер, но при желании, его можно изменить, рассчитав новое сопротивление резистора R2. Схема имеет индикатор протекания зарядного тока, реализованный на диодах VD1,VD2 и светодиода HL2, красного свечения. Сетевой трансформатор – любой малогабаритный на выходное напряжение шесть вольт. Диаметр провода вторичной обмотки должен соответствовать зарядному току и равен 0,7?Iзаряда =0,7?0,25 = 0,35мм."?" — это корень квадратный, почему то редактор движка сайта WordPress не хочет отображать полноценный значок квадратного корня. HL1 — индикатор включения зарядного, но я его поленился поставить. При прохождении зарядного тока на резисторе R2 – падает (R2?Iзаряда = 1,275В) примерно 1,3 вольта, на диодахVD1, VD2 падает примерно полтора вольта, это напряжение мало зависит от величины проходящего тока. Примерное падение напряжения на всей этой цепочке равно 2,8В. Для зарядки аккумуляторов необходимо примерно чуть более трех вольт. Действующее (среднеквадратическое) значение напряжение на выходе трансформатора – 6В, амплитудное — ?8,5В (Uдейств. ? ?2=6??(2) ?8,5В). Все оставшееся напряжение возьмет на себя микросхема, теперь интересно, какая мощность при этом на ней выделится – P = Uвсе оставшееся?Iзаряда?2,8?0,25 ? 0,7Вт, а это говорит о том, что для микросхемы нужен не большой радиатор. Почему все примерно, да потому, что не существует однотипных элементов с одинаковыми параметрами, а для получения необходимых выходных параметров всей схемы и нужна регулировка. Все это я вам написал для того, чтобы немного подумав, вы смогли рассчитать схему зарядного под свои нужды.

Программы