Шим управляемый напряжением. ШИМ — широтно-импульсная модуляция. Совместное использование модулей захвата, сравнения, ШИМ

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП - одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер - это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению - это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» - это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция - это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами - за счёт сглаживания.

Вывод: ШИМ-контроллер - устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов - от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T - это период сигнала,

Часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения - 0.25, в процентах - 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного - с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Pпотерь=(Uвх-Uвых)*I

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное - 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

n=Pполезная/Pпотр

n=((12В*1А)/(15В*1А))*100%=(12Вт/15Вт)*100%=80%

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами , которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) - 2 ключа, мостовые - 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей - один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор - первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

Интересно:

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример - 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме - чаще всего 8 выводов, а в еще более культовой - TL494 - 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

    GND - общий вывод соединяется с минусом схемы или с землей.

    Uc (Vc) - питание микросхемы.

    Ucc (Vss, Vcc) - Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

    OUT - как видно из название - это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) - для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы - с одним и двумя выходными выводами соответственно. Это важно.

    Vref - опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

    ILIM - сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

    ILIMREF - на ней устанавливается напряжение срабатывания ножки ILIM

    SS - формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

    RtCt - выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

    CLOCK - тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

    RAMP - это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс - основа для ШИМ-регулирования.

    INV и NONINV - это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV - тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу - GND.

    EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

    TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются . Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 - обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 - обзор

Другой популярной ШИМ является микросхема 3843 - на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Интересно:

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку - дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

Понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

Один из используемых подходов, позволяющих существенно сократить потери на нагревании силовых компонентов радиосхем, представляет собой использование переключательных режимов работы установок. При подобных системах электросиловой компонент или раскрыт - в это время на нем наблюдается фактически нулевое падение напряжения, или открыт - в это время на него подается нулевой ток. Рассеиваемую мощность можно вычислить, перемножив показатели силы тока и напряжения. В этом режиме получается достичь коэффициента полезного действия около 75-80% и более.

Что такое ШИМ?

Для получения на выходе сигнала требуемой формы силовой ключ должен открываться всего лишь на определенное время, пропорциональное вычисленным показателям выходного напряжения. В этом и заключается принцип широтно-импульсной модуляции (ШИМ, PWM). Далее сигнал такой формы, состоящий из импульсов, разнящихся по своей ширине, поступает в область фильтра на основе дросселя и конденсатора. После преобразования на выходе будет практически идеальный сигнал требуемой формы.

Область применения ШИМ не ограничивается импульсными источниками питания, стабилизаторами и преобразователями напряжения. Использование данного принципа при проектировании мощного усилителя звуковой частоты дает возможность существенно снизить потребление устройством электроэнергии, приводит к миниатюризации схемы и оптимизирует систему теплоотдачи. К недостаткам можно причислить посредственное качество сигнала на выходе.

Формирование ШИМ-сигналов

Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.

Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:

  • Общий вывод (GND). Он реализуется в виде ножки, которая подключается к общему проводу схемы питания устройства.
  • Вывод питания (VC). Отвечает за электропитание схемы. Важно не спутать его с соседом с похожим названием - выводом VCC.
  • Вывод контроля питания (VCC). Как правило, чип контроллера ШИМ принимает на себя руководство силовыми транзисторами (биполярными либо полевыми). В случае если напряжение на выходе снизится, транзисторы станут открываться лишь частично, а не целиком. Стремительно нагреваясь, они в скором времени выйдут из строя, не справившись с нагрузкой. Для того чтобы исключить такую возможность, необходимо следить за показателями напряжения питания на входе микросхемы и не допускать превышения расчетной отметки. Если напряжение на данном выводе опускается ниже установленного специально для этого контроллера, управляющее устройство отключается. Как правило, данную ножку соединяют напрямую с выводом VC.

Выходное управляющее напряжение (OUT)

Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).

Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей "затвор - исток" и "затвор - сток". Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.

ШИМ-контроллеры для большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.

Основные проблемы ШИМ-преобразователей

При работе любого устройства полностью исключить вероятность поломки невозможно, и преобразователей это тоже касается. Сложность конструкции при этом не имеет значения, проблемы в эксплуатации может вызвать даже известный ШИМ-контроллер TL494. Неисправности имеют различную природу - некоторые из них можно выявить на глаз, а для обнаружения других требуется специальное измерительное оборудование.

Чтобы ШИМ-контроллер, следует ознакомится со списком основных неисправностей приборов, а лишь позже - с вариантами их устранения.

Диагностика неисправностей

Одна из часто встречающихся проблем - пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.

Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:

  • Контроллер глохнет после старта - обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
  • ШИМ-контроллер не стартует - отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
  • Напряжение на выходе отличается от номинального - проблемы с петлей ООС или с контроллером.
  • После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах - некорректная работа ШИМ или драйверов.
  • Нестабильная работа платы, наличие странных звуков - обрыв петли ООС или цепочки RC, деградация емкости фильтра.

В заключение

Универсальные и многофункциональные ШИМ-контроллеры сейчас можно встретить практически везде. Они служат не только в качестве неотъемлемой составляющей блоков питания большинства современных устройств - типовых компьютеров и других повседневных девайсов. На основе контроллеров разрабатываются новые технологии, позволяющие существенно сократить расход ресурсов во многих отраслях человеческой деятельности. Владельцам частных домов пригодятся контроллеры заряда аккумуляторов от фотоэлектрических батарей, основанные на принципе широтно-импульсной модуляции тока заряда.

Высокий коэффициент полезного действия делает разработку новых устройств, действие которых основывается на принципе ШИМ, весьма перспективной. Вторичные источники питания - вовсе не единственное направление деятельности.

Основные технические параметры:

  • а) Частота ШИМ - сигнала 400 Гц
  • б) Количество градаций ШИМ - сигнала 16
  • в) ШИМ - контроллер на основе вычитающего счётчика TTL/74ХХ
  • д) ШИМ - контроллер разработать на микросхемах TTL/74ХХ серии SN74. Провести отработку основных блоков контроллера на логических элементах - Logic Gates (Ideal) и на D-триггерах (Ideal), составить схемы блоков контроллера на реальных TTL ИС - 4-ЛЭ и 2-D триггера в корпусе заданной серии.
  • г) Подготовить заказные микросхемы на основные блоки контроллера - генератор тактовых импульсов, делитель частоты и основной блок.

Основные требования:

Составить структурную и принципиальную схемы котроллера, провести отработку отдельных блоков в программной среде EWB, провести обоснованный выбор необходимых микросхем.

Представить принципиальную электрическую схему ШИМ - контроллера.

Цифровой ШИМ - контроллер

ШИМ (широтно-импульсная модуляция), англ. PWM-- pulse width modulation. ШИМ - это цифровой сигнал, с помощью которого можно задать и управлять в широких пределах уровнем аналогового сигнала с помощью ключей.

Рис.1.

Это особенно важно в мощных регуляторах с высоким КПД, так как на ключах рассеивается минимальная мощность только в момент переключения.

На рис.1 приведена временная диаграмма ШИМ с постоянной скважностью. На одном периоде укладывается один единичный импульс шириной T1 и один нулевой импульс шириной T0. При этом

Период ШИМ -.T, а, следовательно, частота следования импульсов F=1/Т - величина постоянная. Коэффициент ШИМ G - это и есть эквивалент амплитуды аналогового сигнала:

Изменением длительности импульса Т 1 можно регулировать средний уровень напряжения: если уровень максимального сигнала ШИМ Um=Еп, то подав сигнал ШИМ на фильтр напряжения, на выходе фильтра можно получить аналоговое напряжение

В некоторых случаях применение фильтра необязательно - например, при регулировании тока для управления яркостью свечения накала лампы, скорости вращения двигателя, так как у них есть некоторая постоянная времени, и если период ШИМ меньше этой постоянной, то мерцания или вибрации двигателя не будет. Но в некоторых случаях без фильтра не обойтись. Естественно, чем меньше период ШИМ, тем "глаже" будет аналоговый сигнал, но уменьшение периода ведёт к тому, что увеличивается дискретность регулирования скважности, растет частота следования импульсов F и, соответственно, растут потери мощности на ключах, снижается КПД.

Преобразователи аналогового сигнала в ШИМ импульсы получили название ШИМ - модуляторов , так как они используются широко в кодово-импульсной связи, простейших устройствах автоматики. Преобразователи двоичного кода в ШИМ импульсы получили особое распространение с развитием микропроцессорной техники, являются встроенными устройствами большинства современных микроконтроллеров. В литературе получили название ШИМ - контроллеры .

У аналогово-цифровых ШИМ - модуляторов и цифровых ШИМ - контроллеров много общего (см. рис. 2). Генератор синхронизирующих импульсов задает период (Т) и частоту следования импульсов ШИМ (F=1/Т). Формирователь пилообразного сигнала генерирует линейно изменяющийся сигнал. Устройство сравнения фиксирует момент времени, когда линейно изменяющийся сигнал достигнет уровня управляющего сигнала Uo. На выходе формируется импульсный сигнал от начала временной развертки до момента равенства. В ШИМ - модуляторах управляющий сигнал аналоговый, в ШИМ - контроллерах - цифровой. Это определяет конкретную схемотехнику (аналоговую или цифровую) генератора пилообразного сигнала и схемы сравнения.

Дорогой Бобот, не мог бы ты немного побольше рассказать об импульсах?

Хорошо, что ты попросил, дружище Бибот. Так как именно импульсы являются главными носителями информации в цифровой электронике, поэтому очень важно знать разные характеристики импульсов. Начнём, пожалуй, с одиночного импульса.

Электрический импульс - это всплеск напряжения или тока в определённом и конечном промежутке времени.

Импульс всегда имеет начало (передний фронт) и конец (спад).
Ты уже наверняка знаешь, что в цифровой электронике все сигналы могут быть представлены всего двумя уровнями напряжения: "логической единицей" и "логическим нулём". Это всего лишь условные величины напряжения. "Логической единице" приписывается высокий уровень напряжения, обычно около 2-3 вольт, "логическим нулём" считается близкое к нулю напряжение. Цифровые импульсы графически изображаются прямоугольными или трапециевидными по форме:

Главной величиной одиночного импульса является его длина. Длина импульса - это отрезок времени, в течение которого рассматриваемый логический уровень имеет одно устойчивое состояние. На рисунке латинской буквой t отмечена длина импульса высокого уровня, то есть логической "1". Длина импульса измеряется в секундах, но чаще в миллисекундах (мс), микросекундах (мкс) и даже наносекундах (нс). Одна наносекунда - это очень короткий отрезок времени!
Запомни: 1 мс = 0,001 сек.
1 мкс = 0,000001 сек
1 нс = 0,000000001 сек

Применяются также англоязычные сокращения: ms - миллисекунда, μs - микросекунда, ns - наносекунда.

За одну наносекунду я даже пикнуть не успею!
Скажи, Бобот, а что произойдёт, если импульсов будет много?

Хороший вопрос, Бибот! Чем больше импульсов, тем больше информации можно ими передать. У множества импульсов появляется много характеристик. Самая простая - частота следования импульсов.
Частота следования импульсов - это количество полных импульсов в единицу времени. За единицу времени принято брать одну секунду. Единицей измерения частоты является герц, по имени немецкого физика Генриха Герца . Один герц - это регистрация одного полного импульса за одну секунду. Если произойдёт тысяча колебаний в секунду будет 1000 герц, или сокращённо 1000 Гц, что равно 1 килогерцу, 1 кГц. Можно встретить и англоязычное сокращение: Hz - Гц. Частота обозначается буквой F .

Существуют ещё несколько характеристик, которые проявляются только при участии двух и более импульсов. Одним из таких важных параметров импульсной последовательности является период.
Период импульсов - это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T .


Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: T=1/F
Если длина импульса t точно равна половине периода T , то такой сигнал часто называют "меандр ".

Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S=T/t Скважность - безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle, это так называемый коэффициент заполнения.
Коэффициент заполнения D является величиной, обратной скважности. Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S

Дорогой Бобот, так много разного и интересного у простых импульсов! Но потихоньку я уже начинаю путаться.

Дружище, Бибот, это ты верно заметил, импульсы - не так уж и просты! Но осталось совсем чуть-чуть.

Если ты меня внимательно слушал, то ты мог заметить, что если увеличивать или уменьшать длину импульса и при этом на столько же уменьшать или увеличивать паузу между импульсами, то период следования импульсов и частота останется неизменной! Это очень важный факт, который нам ещё не раз понадобится в будущем.

Но сейчас ещё хочется добавить другие способы передачи информации с помощью импульсов.
Например, можно несколько импульсов объединить в группы. Такие группы с паузами определённой длины между ними называют пачками или пакетами. Генерируя разное число импульсов в группе и варьируя его, можно также передавать какую-либо информацию.


Для передачи информации в цифровой электронике (ещё её называют дискретной электроникой) можно использовать два и более проводников или каналов с разными импульсными сигналами. При этом информация передаётся с учётом определённых правил. Такой метод позволяет заметно увеличить скорость передачи информации или добавляет возможность управлением потоком информации между различными схемами.

Перечисленные возможности передачи информации с помощью импульсов могут быть использованы как сами по себе раздельно, так и в комбинации между собой.
Существуют также множество стандартов передачи информации с помощью импульсов, например I2C, SPI, CAN, USB, LPT.

На наш взгляд, первое, с чего можно начать знакомство с платформой Arduino это её цифровые выводы. Они нам пригодятся для подключения различной периферии: светодиоды, реле модули и т.п

На плате Arduino UNO их 14 (D0-D13). Они могут работать как входы, как выходы и как выходы с поддержкой ШИМ.

Конфигурация выводов как вход либо выход задается в void setup

pinMode (3, OUTPUT ); // Инициализируем цифровой pin 3 как вход pinMode (3, INPUT );

1) Цифровые выходы

После конфигурации цифрового вывода как выхода, мы можем придать ему два значения:

// Устанавливает высокий уровень напряжения на 3 пине digitalWrite (3, HIGH ); // Устанавливает низкий уровень напряжения на 3 пине digitalWrite (3, LOW );

При высоком уровне выход работает как "источник питания" с напряжением 5 Вольт, при низком же уровне выход соединяется с землей МК. В двух этих режимах порт может выдать либо принять ток до 40мА. Это позволит подключать к плате Arduino маломощные нагрузки. При превышении тока в 40мА может выгореть либо отдельно порт, либо весь камень.

Пример на практике

В качестве первого примера выполним некий "Hello, World!" в тематике Arduino - помигаем светодиодом.

Плата Arduino уже имеет на своем борту встроенный светодиод подключенный к выводу D13. Можно использовать и его, но в качестве примера соберем первую схемку на макетной плате.

2) Цифровые выходы с поддержкой ШИМ

ШИМ (Широтно-Импульсная Модуляция) или PWM (Pulse Width Modulation) представляет собой программное, завязанное на внутренний таймер контроллера, чередование высокого и низкого уровней на порту контроллера с задаваемой скважностью. ШИМ это очень полезная штука, которая пригодится для регулирования яркости светодиодов либо управления скоростью вращения моторов ().

Не все цифровые выводы имеют поддержку ШИМ. У Arduino UNO их 6 (D3, D5, D6, D9, D10, D11). У других плат количество может отличаться. Смотрите в спецификации.

В программном коде скважность задается числом от 0(min) до 255(max)

// Устанавливает ШИМ сигнал на 3 пине со скважностью 150 analogWrite (3, 150);

Пример на практике

В качестве наглядного примера поупрявляем яркостью светодиода с помощью ШИМ модуляции.

Как уже говорилось, Arduino имеет на своем борту встроенный светодиод подключенный к выводу D13. Однако, этот вывод не имеет поддержки ШИМ. ШИМ поддержку имеет вывод D3. К нему, как и в предыдущем примере, мы подключим светодиод

Для эксперимента нам понадобятся:

Описание примера:

При установке высокого уровня (HIGH ), на выводе D3 появляется напряжение, которое протекая через светодиод (LED1) заставляет его светиться. При установке низкого уровня (LOW ), напряжение больше не подается и светодиод не горит. Резистор (R1) необходим для ограничения потребляемого светодиодом тока.

Скважность ШИМ сигнала, по сути своей, задает интервалы чередования высокого и низкого уровня, т.е. зажигает и гасит светодиод. Благодаря инертности нашего зрения, при частоте мерцания светодиода свыше определенного значения, наш мозг перестает воспринимать реально происходящие мерцания и воспринимает картинку как изменение яркости свечения.

Принципиальная схема остается такой же как и в первом примере.

На реальной макетной плате всё будет выглядеть следующим образом:

Примечания по сборке:

Вывод D3 соединяется с анодом светодиода, а катод уходит на резистор. У резистора нет полярности и его можно устанавливать любой стороной.

Пример программного кода:

// Присваиваем имя цифровому выводу 3 int led = 3; void setup () { // Инициализируем цифровой pin 3 как выход pinMode (led, OUTPUT ); } void loop () { /* Задаем значение ШИМ равное 25 (10% от max) Иными словами (1/10 времени HIGH, 9/10 LOW) Такое мигание находится в диапазоне воспринимаемой человеком. Глаз видит мигание */ analogWrite (led, 25); delay (4000); // Ждем 4 секунды /* Задаем значение ШИМ равное 150 (60% от max) Иными словами (6/10 времени HIGH, 4/10 LOW) Частота смены картинки велика, выше воспринимаемой глазом человека, но не максимальна Глаз воспринимает как постоянно горящий светодиод с определенной яркостью */ analogWrite (led, 150); delay (4000); /* Задаем значение ШИМ равное 255 (100% от max) Иными словами (10/10 времени HIGH, 0/10 LOW) При максимальном значении ШИМ светодиод горит постоянно */ analogWrite (led, 255); delay (4000); // И для финального примера прогоним значения ШИМ от min до max for (int i = 0; i < 255; i++) { analogWrite (led, i); delay (50); } for (int i = 255; i > 0; i--) { analogWrite (led, i); delay (50); } }

3) Цифровые входы

Как уже говорилось, цифровые выводы могут использоваться как входы. Самым ярким примером использования данной возможности является подключение кнопки. Чтение производится функцией.

// Считываем значение с цифрового порта 4 digitalRead (4);

В ответ получаем значения HIGH или LOW .

Если к считываемому порту ничего не подключено, то функция digitalRead () может беспорядочно возвращать значения HIGH или LOW. Во избежание ложных срабатываний, входы необходимо подтягивать резистором 10-20кОм. При замыкании кнопки на землю - подтягивать к питанию, при замыкании на питание - к земле.

Работа с Андроидом