Буква обозначающая длину волны. Определяем, чему равна длина волны - формула. Как рассчитывается длина звуковой волны - формула. Цвет в машинном зрении

Диапазоны плавно пере-ходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны (Л > 1 мм). Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны (Л > 10 км). Хорошо распространяются в воде, поэтому исполь-зуются для связи с подводными лодками.

Длинные волны (1 км < Л < 10 км). Используются в радиосвязи, радиовещании, радионавигации.

Средние волны (100 м < Л < 1 км). Радиовещание. Радиосвязь на расстоянии не более 1500 км.

Короткие волны (10 м < Л < 100 м). Радиовещание. Хорошо отражаются от ионо-сферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара. Поэтому на коротких волнах можно ловить радиостанции других стран.

Метровые волны (1м < Л < 10 м). Местное радивещание в УКВ-диапазоне. Напри-мер, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия 1» равна примерно 5 м.

Дециметровые волны (10 см < Л < 1м). Телевидение (дециметровые каналы). На-пример, длина волны телеканала «Animal Planet» приблизительно равна 42 см. Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиовол-ны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см. Есть ещё одно хорошо известное вам применение дециметровых волн — это микровол-новые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения моле-кулами воды). Она отвечает длине волны примерно 12 см. Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).

Сантиметровые волны (1 см < Л < 10 см). Это — область радиолокации и спутни-ковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.

Инфракрасное излучение (780 нм < Л < 1 мм). Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра. Инфракрасное излучение имеет широкую область применения: инфракрасные обогревате-ли, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое. При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблю-дать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

Видимый свет (380 нм < Л < 780 нм). Излучение в этом промежутке длин волн воспринимается человеческим глазом. Диапазон видимого света можно разделить на семь интервалов — так называемые спек-тральные цвета.

Красный: 625 нм — 780 нм;

Оранжевый: 590 нм — 625 нм;

Жёлтый: 565 нм — 590 нм;

Зелёный: 500 нм — 565 нм;

Голубой: 485 нм — 500 нм;

Синий: 440 нм — 485 нм;

Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра.

Ультрафиолетовое излучение (10 нм < Л < 380 нм). Главным источником ультрафиолетового излучения является Солнце. Именно ультрафи-олетовое излучение приводит к появлению загара. Человеческим глазом оно уже не вос-принимается. В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии. Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в боль-ницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы. Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.

Рентгеновское излучение (5 пм < Л < 10 нм). Возникает в результате торможения быстрых электронов у анода и стенок газоразряд-ных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но по-глощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки. В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж. Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных рас-стояний в кристаллах; поэтому кристаллы являются естественными дифракционными ре-шётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах. Так, именно с помощью рент,геност,рукт,урного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина. В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

Гамма-излучение (Л < 5 пм). Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей. Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях. Некоторые насекомые и птицы способны видеть в ультрафиолете. Например, пчёлы с помощью своего уль-трафиолетового зрения находят нектар на цветах. Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростя-ми, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение). В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую бо-лезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии. Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-сте-рилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

В ходе урока вы сможете самостоятельно изучить тему «Длина волны. Скорость распространения волны». На этом уроке вы сможете познакомиться с особенными характеристиками волн. В первую очередь вы узнаете, что такое длина волны. Мы рассмотрим ее определение, способ ее обозначения и измерения. Затем мы также подробно рассмотрим скорость распространения волны.

Для начала вспомним, что механическая волна – это колебание, которое распространяется с течением времени в упругой среде. Раз это колебание, волне будут присущи все характеристики, которые соответствуют колебанию: амплитуда, период колебания и частота.

Кроме этого, у волны появляются свои особые характеристики. Одной из таких характеристик является длина волны . Обозначается длина волны греческой буквой (лямбда, или говорят «ламбда») и измеряется в метрах. Перечислим характеристики волны:

Что такое длина волны?

Длина волны - это наименьшее расстояние между частицами, совершающими колебание с одинаковой фазой.

Рис. 1. Длина волны, амплитуда волны

Говорить о длине волны в продольной волне сложнее, потому что там пронаблюдать частицы, которые совершают одинаковые колебания, гораздо труднее. Но и там есть характеристика - длина волны , которая определяет расстояние между двумя частицами, совершающими одинаковое колебание, колебание с одинаковой фазой.

Также длиной волны можно назвать расстояние, пройденное волной, за один период колебания частицы (рис. 2).

Рис. 2. Длина волны

Следующая характеристика - это скорость распространения волны (или просто скорость волны). Скорость волны обозначается так же, как и любая другая скорость, буквой и измеряется в . Как наглядно объяснить, что такое скорость волны? Проще всего это сделать на примере поперечной волны.

Поперечная волна - это волна, в которой возмущения ориентированы перпендикулярно направлению ее распространения (рис. 3).

Рис. 3. Поперечная волна

Представьте себе летящую над гребнем волны чайку. Ее скорость полета над гребнем и будет скоростью самой волны (рис.4).

Рис. 4. К определению скорости волны

Скорость волны зависит от того, какова плотность среды, каковы силы взаимодействия между частицами этой среды. Запишем связь между скоростью волны, длиной волны и периодом волны: .

Скорость можно определить, как отношение длины волны, расстояние, пройденное волной за один период, к периоду колебания частиц среды, в которой распространяется волна. Кроме этого, вспомним, что период связан с частотой следующим соотношением:

Тогда получим соотношение, которое связывает скорость, длину волны и частоту колебаний: .

Мы знаем, что волна возникает в результате действия внешних сил. Важно заметить, что при переходе волны из одной среды в другую изменяются ее характеристики: скорость движения волн, длина волны. А вот частота колебания остается прежней.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb» ()
  2. Интернет-портал «eduspb» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

Под скоростью волны понимают ско-рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с .

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери-од колебаний в волне обратно пропорционален частоте v , т. е. Т = 1/ v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

,

откуда

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны , находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра-фии волн в колеблющейся упругой среде в моменты времени t и t + Δt . Ось х совпадает с направле-нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час-тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

герц эксагерц петагерц терагерц гигагерц мегагерц килогерц гектогерц декагерц децигерц сантигерц миллигерц микрогерц наногерц пикогерц фемтогерц аттогерц циклов в секунду длина волны в эксаметрах длина волны в петаметрах длина волны в тераметрах длина волны в гигаметрах длина волны в мегаметрах длина волны в километрах длина волны в гектометрах длина волны в декаметрах длина волны в метрах длина волны в дециметрах длина волны в сантиметрах длина волны в миллиметрах длина волны в микрометрах Комптоновская длина волны электрона Комптоновская длина волны протона Комптоновская длина волны нейтрона оборотов в секунду оборотов в минуту оборотов в час оборотов в сутки

Удельная теплоёмкость

Подробнее о частоте и длине волны

Общие сведения

Частота

Частота - это величина, измеряющая как часто повторяется тот или иной периодический процесс. В физике с помощью частоты описывают свойства волновых процессов. Частота волны - количество полных циклов волнового процесса за единицу времени. Единица частоты в системе СИ - герц (Гц). Один герц равен одному колебанию в секунду.

Длина волны

Существует множество различных типов волн в природе, от вызванных ветром морских волн до электромагнитных волн. Свойства электромагнитных волн зависят от длины волны. Такие волны разделяют на несколько видов:

  • Гамма-лучи с длиной волны до 0,01 нанометра (нм).
  • Рентгеновские лучи с длиной волны - от 0,01 нм до 10 нм.
  • Волны ультрафиолетового диапазона , которые имеют длину от 10 до 380 нм. Человеческому глазу они не видимы.
  • Свет в видимой части спектра с длиной волны 380–700 нм.
  • Невидимое для людей инфракрасное излучение с длиной волны от 700 нм до 1 миллиметра.
  • За инфракрасными волнами следуют микроволновые , с длиной волны от 1 миллиметра до 1 метра.
  • Самые длинные - радиоволны . Их длина начинается с 1 метра.

Эта статья посвящена электромагнитному излучению, и особенно свету. В ней мы обсудим, как длина и частота волны влияют на свет, включая видимый спектр, ультрафиолетовое и инфракрасное излучение.

Электромагнитное излучение

Электромагнитное излучение - это энергия, свойства которой одновременно сходны со свойствами волн и частиц. Эта особенность называется корпускулярно-волновым дуализмом. Электромагнитные волны состоят из магнитной волны и перпендикулярной к ней электрической волны.

Энергия электромагнитного излучения - результат движения частиц, которые называются фотонами. Чем выше частота излучения, тем они более активны, и тем больше вреда они могут принести клеткам и тканям живых организмов. Это происходит потому, что чем выше частота излучения, тем больше они несут энергии. Большая энергия позволяет им изменить молекулярную структуру веществ, на которые они действуют. Именно поэтому ультрафиолетовое, рентгеновское и гамма излучение так вредно для животных и растений. Огромная часть этого излучения - в космосе. Оно присутствует и на Земле, несмотря на то, что озоновый слой атмосферы вокруг Земли блокирует большую его часть.

Электромагнитное излучение и атмосфера

Атмосфера земли пропускает только электромагнитное излучение с определенной частотой. Большая часть гамма-излучения, рентгеновских лучей, ультрафиолетового света, часть излучения в инфракрасном диапазоне и длинные радиоволны блокируются атмосферой Земли. Атмосфера поглощает их и не пропускает дальше. Часть электромагнитных волн, в частности, излучение в коротковолновом диапазоне, отражается от ионосферы. Все остальное излучение попадает на поверхность Земли. В верхних атмосферных слоях, то есть, дальше от поверхности Земли, больше радиации, чем в нижних слоях. Поэтому чем выше, тем опаснее для живых организмов находиться там без защитных костюмов.

Атмосфера пропускает на Землю небольшое количество ультрафиолетового света, и он приносит вред коже. Именно из-за ультрафиолетовых лучей люди обгорают на солнце и могут даже заболеть раком кожи. С другой стороны, некоторые лучи, пропускаемые атмосферой, приносят пользу. Например, инфракрасные лучи, которые попадают на поверхность Земли, используют в астрономии - инфракрасные телескопы следят за инфракрасными лучами, излучаемыми астрономическими объектами. Чем выше от поверхности Земли, тем больше инфракрасного излучения, поэтому телескопы часто устанавливают на вершинах гор и на других возвышенностях. Иногда их отправляют в космос, чтобы улучшить видимость инфракрасных лучей.

Взаимоотношение между частотой и длиной волны

Частота и длина волны обратно пропорциональны друг другу. Это значит, что по мере увеличения длины волны частота уменьшается и наоборот. Это легко представить: если частота колебаний волнового процесса высокая, то время между колебаниями намного короче, чем у волн, частота колебаний которых меньше. Если представить волну на графике, то расстояние между ее пиками будет тем меньше, чем больше колебаний она совершает на определенном отрезке времени.

Чтобы определить скорость распространения волны в среде, необходимо умножить частоту волны на ее длину. Электромагнитные волны в вакууме всегда распространяются с одинаковой скоростью. Эта скорость известна как скорость света. Она равна 299 792 458 метрам в секунду.

Свет

Видимый свет - электромагнитные волны с частотой и длиной, которые определяют его цвет.

Длина волны и цвет

Самая короткая длина волны видимого света - 380 нанометров. Это фиолетовый цвет, за ним следуют синий и голубой, затем зеленый, желтый, оранжевый и, наконец, красный. Белый свет состоит из всех цветов сразу, то есть, белые предметы отражают все цвета. Это можно увидеть с помощью призмы. Попадающий в нее свет преломляется и выстраивается в полосу цветов в той же последовательность, что в радуге. Эта последовательность - от цветов с самой короткой длиной волны, до самой длинной. Зависимость скорости распространения света в веществе от длины волны называется дисперсией.

Радуга образуется похожим способом. Капли воды, рассеянные в атмосфере после дождя, ведут себя так же как призма и преломляют каждую волну. Цвета радуги настолько важны, что во многих языках существуют мнемоника, то есть прием запоминания цветов радуги, настолько простой, что запомнить их могут даже дети. Многие дети, говорящие по-русски, знают, что «Каждый охотник желает знать, где сидит фазан». Некоторые люди придумывают свою мнемонику, и это - особенно полезное упражнение для детей, так как, придумав свой собственный метод запоминания цветов радуги, они быстрее их запомнят.

Свет, к которому человеческий глаз наиболее чувствителен - зеленый, с длиной волны в 555 нм в светлой среде и 505 нм в сумерках и темноте. Различать цвета могут далеко не все животные. У кошек, например, цветное зрение не развито. С другой стороны, некоторые животные видят цвета намного лучше, чем люди. Например, некоторые виды видят ультрафиолетовый и инфракрасный свет.

Отражение света

Цвет предмета определяется длиной волны света, отраженного с его поверхности. Белые предметы отражают все волны видимого спектра, в то время как черные - наоборот, поглощают все волны и ничего не отражают.

Один из естественных материалов с высоким коэффициентом дисперсии - алмаз. Правильно обработанные бриллианты отражают свет как от наружных, так и от внутренних граней, преломляя его, как и призма. При этом важно, чтобы большая часть этого света была отражена вверх, в сторону глаза, а не, например, вниз, внутрь оправы, где его не видно. Благодаря высокой дисперсии бриллианты очень красиво сияют на солнце и при искусственном освещении. Стекло, ограненное так же, как бриллиант, тоже сияет, но не настолько сильно. Это связано с тем, что, благодаря химическому составу, алмазы отражают свет намного лучше, чем стекло. Углы, используемые при огранке бриллиантов, имеет огромное значение, потому что слишком острые или слишком тупые углы либо не позволяют свету отражаться от внутренних стен, либо отражают свет в оправу, как показано на иллюстрации.

Спектроскопия

Для определения химического состава вещества иногда используют спектральный анализ или спектроскопию. Этот способ особенно хорош, если химический анализ вещества невозможно провести, работая с ним непосредственно, например, при определении химического состава звезд. Зная, какое электромагнитное излучение поглощает тело, можно определить, из чего оно состоит. Абсорбционная спектроскопия, являющаяся одним из разделов спектроскопии, определяет какое излучение поглощается телом. Такой анализ можно делать на расстоянии, поэтому его часто используют в астрономии, а также в работе с ядовитыми и опасными веществами.

Определение наличия электромагнитного излучения

Видимый свет, так же как и всё электромагнитное излучение - это энергия. Чем больше энергии излучается, тем легче эту радиацию измерить. Количество излученной энергии уменьшается по мере увеличения длины волны. Зрение возможно именно благодаря тому, что люди и животные распознают эту энергию и чувствуют разницу между излучением с разной длиной волны. Электромагнитное излучение разной длины ощущается глазом как разные цвета. По такому принципу работают не только глаза животных и людей, но и технологии, созданные людьми для обработки электромагнитного излучения.

Видимый свет

Люди и животные видят большой спектр электромагнитного излучения. Большинство людей и животных, например, реагируют на видимый свет , а некоторые животные - еще и на ультрафиолетовые и инфракрасные лучи. Способность различать цвета - не у всех животных - некоторые, видят только разницу между светлыми и темными поверхностями. Наш мозг определяет цвет так: фотоны электромагнитного излучения попадают в глаз на сетчатку и, проходя через нее, возбуждают колбочки, фоторецепторы глаза. В результате по нервной системе передается сигнал в мозг. Кроме колбочек, в глазах есть и другие фоторецепторы, палочки, но они не способны различать цвета. Их назначение - определять яркость и силу света.

В глазу обычно находится несколько видов колбочек. У людей - три типа, каждый из которых поглощает фотоны света в пределах определенных длин волны. При их поглощении происходит химическая реакция, в результате которой в мозг поступают нервные импульсы с информацией о длине волны. Эти сигналы обрабатывает зрительная зона коры головного мозга. Это - участок мозга, ответственный за восприятие звука. Каждый тип колбочек отвечает только за волны с определенной длиной, поэтому для получения полного представления о цвете, информацию, полученную от всех колбочек, складывают вместе.

У некоторых животных еще больше видов колбочек, чем у людей. Так, например, у некоторых видов рыб и птиц их от четырех до пяти типов. Интересно, что у самок некоторых животных больше типов колбочек, чем у самцов. У некоторых птиц, например у чаек, которые ловят добычу в воде или на ее поверхности, внутри колбочек есть желтые или красные капли масла, которые выступают в роли фильтра. Это помогает им видеть большее количество цветов. Подобным образом устроены глаза и у рептилий.

Инфракрасный свет

У змей, в отличие от людей, не только зрительные рецепторы, но и чувствительные органы, которые реагируют на инфракрасное излучение . Они поглощают энергию инфракрасный лучей, то есть реагируют на тепло. Некоторые устройства, например приборы ночного видения, также реагируют на тепло, выделяемое инфракрасным излучателем. Такие устройства используют военные, а также для обеспечения безопасности и охраны помещений и территории. Животные, которые видят инфракрасный свет, и устройства, которые могут его распознавать, видят не только предметы, которые находятся в их поле зрения на данный момент, но и следы предметов, животных, или людей, которые находились там до этого, если не прошло слишком много времени. Например, змеям видно, если грызуны копали в земле ямку, а полицейские, которые пользуются прибором ночного видения, видят, если в земле были недавно спрятаны следы преступления, например, деньги, наркотики, или что-то другое. Устройства для регистрации инфракрасного излучения используют в телескопах, а также для проверки контейнеров и камер на герметичность. С их помощью хорошо видно место утечки тепла. В медицине изображения в инфракрасном свете используют для диагностики. В истории искусства - чтобы определить, что изображено под верхним слоем краски. Устройства ночного видения используют для охраны помещений.

Ультрафиолетовый свет

Некоторые рыбы видят ультрафиолетовый свет . Их глаза содержат пигмент, чувствительный к ультрафиолетовым лучам. Кожа рыб содержит участки, отражающие ультрафиолетовый свет, невидимый для человека и других животных - что часто используется в животном мире для маркировки пола животных, а также в социальных целях. Некоторые птицы тоже видят ультрафиолетовый свет. Это умение особенно важно во время брачного периода, когда птицы ищут потенциальных партнеров. Поверхности некоторых растений также хорошо отражают ультрафиолетовый свет, и способность его видеть помогает в поиске пищи. Кроме рыб и птиц, ультрафиолетовый свет видят некоторые рептилии, например черепахи, ящерицы и зеленые игуаны (на иллюстрации).

Человеческий глаз, как и глаза животных, поглощает ультрафиолетовый свет, но не может его обработать. У людей он разрушает клетки глаза, особенно в роговице и хрусталике. Это, в свою очередь, вызывает различные заболевания и даже слепоту. Несмотря на то, что ультрафиолетовый свет вредит зрению, небольшое его количество необходимо людям и животным, чтобы вырабатывать витамин D. Ультрафиолетовое излучение, как и инфракрасное, используют во многих отраслях, например в медицине для дезинфекции, в астрономии для наблюдения за звездами и другими объектами и в химии для отверждения жидких веществ, а также для визуализации, то есть для создания диаграмм распространения веществ в определенном пространстве. С помощью ультрафиолетового света определяют поддельные банкноты и пропуска, если на них должны быть напечатаны знаки специальными чернилами, распознаваемыми с помощью ультрафиолетового света. В случае с подделкой документов ультрафиолетовая лампа не всегда помогает, так как преступники иногда используют настоящий документ и заменяют на нем фотографию или другую информацию, так что маркировка для ультрафиолетовых ламп остается. Существует также множество других применений для ультрафиолетового излучения.

Цветовая слепота

Из-за дефектов зрения некоторые люди не в состоянии различать цвета. Эта проблема называется цветовой слепотой или дальтонизмом, по имени человека, который первый описал эту особенность зрения. Иногда люди не видят только цвета с определенной длиной волны, а иногда они не различают цвета вообще. Часто причина - недостаточно развитые или поврежденные фоторецепторы, но в некоторых случаях проблема заключается в повреждениях на проводящем пути нервной системы, например в зрительной коре головного мозга, где обрабатывается информация о цвете. Во многих случаях это состояние создает людям и животным неудобства и проблемы, но иногда неумение различать цвета, наоборот - преимущество. Это подтверждается тем, что, несмотря на долгие годы эволюции, у многих животных цветное зрение не развито. Люди и животные, которые не различают цвета, могут, например, хорошо видеть камуфляж других животных.

Несмотря на преимущества цветовой слепоты, в обществе ее считают проблемой, и для людей с дальтонизмом закрыта дорога в некоторые профессии. Обычно они не могут получить полные права по управлению самолетом без ограничений. Во многих странах водительские права для этих людей тоже имеют ограничения, а в некоторых случаях они не могут получить права вообще. Поэтому они не всегда могут найти работу, на которой необходимо управлять автомобилем, самолетом, и другими транспортными средствами. Также им сложно найти работу, где умение определять и использовать цвета имеет большое значение. Например, им трудно стать дизайнерами, или работать в среде, где цвет используют, как сигнал (например, об опасности).

Проводятся работы по созданию более благоприятных условий для людей с цветовой слепотой. Например, существуют таблицы, в которых цвета соответствует знакам, и в некоторых странах эти знаки используют в учреждениях и общественных местах наряду с цветом. Некоторые дизайнеры не используют или ограничивают использование цвета для передачи важной информации в своих работах. Вместо цвета, или наряду с ним, они используют яркость, текст, и другие способы выделения информации, чтобы даже люди, не различающие цвета, могли полостью получить информацию, передаваемую дизайнером. В большинстве случаев люди с цветовой слепотой не различают красный и зеленый, поэтому дизайнеры иногда заменяют комбинацию «красный = опасность, зеленый = все нормально» на красный и синий цвета. Большинство операционных систем также позволяют настроить цвета так, чтобы людям с цветовой слепотой было все видно.

Цвет в машинном зрении

Машинное зрение в цвете - быстроразвивающаяся отрасль искусственного интеллекта. До недавнего времени большая часть работы в этой области проходила с монохромными изображениями, но сейчас все больше научных лабораторий работают с цветом. Некоторые алгоритмы для работы с монохромными изображениями применяют также и для обработки цветных изображений.

Применение

Машинное зрение используется в ряде отраслей, например для управления роботами, самоуправляемыми автомобилями, и беспилотными летательными аппаратами. Оно полезно в сфере обеспечения безопасности, например для опознания людей и предметов по фотографиям, для поиска по базам данных, для отслеживания движения предметов, в зависимости от их цвета и так далее. Определение местоположения движущихся объектов позволяет компьютеру определить направление взгляда человека или следить за движением машин, людей, рук, и других предметов.

Чтобы правильно опознать незнакомые предметы, важно знать об их форме и других свойствах, но информация о цвете не настолько важна. При работе со знакомыми предметами, цвет, наоборот, помогает быстрее их распознать. Работа с цветом также удобна потому, что информация о цвете может быть получена даже с изображений с низким разрешением. Для распознавания формы предмета, в отличие от цвета, требуется высокое разрешение. Работа с цветом вместо формы предмета позволяет уменьшить время обработки изображения, и использует меньше компьютерных ресурсов. Цвет помогает распознавать предметы одинаковой формы, а также может быть использован как сигнал или знак (например, красный цвет - сигнал опасности). При этом не нужно распознавать форму этого знака, или текст, на нем написанный. На веб-сайте YouTube можно увидеть множество интересных примеров использования цветного машинного зрения.

Обработка информации о цвете

Фотографии, которые обрабатывает компьютер, либо загружены пользователями, либо сняты встроенной камерой. Процесс цифровой фото- и видеосъемки освоен хорошо, но вот обработка этих изображений, особенно в цвете, связана с множеством трудностей, многие из которых еще не решены. Это связано с тем, что цветное зрение у людей и животных устроено очень сложно, и создать компьютерное зрение наподобие человеческого - непросто. Зрение, как и слух, основано на адаптации к окружающей среде. Восприятие звука зависит не только от частоты, звукового давления и продолжительности звука, но и от наличия или отсутствия в окружающей среде других звуков. Так и со зрением - восприятие цвета зависит не только от частоты и длины волны, но и от особенностей окружающей среды. Так, например, цвета окружающих предметов влияют на наше восприятие цвета.

С точки зрения эволюции такая адаптация необходима, чтобы помочь нам привыкнуть к окружающей среде и перестать обращать внимание на незначительные элементы, а направить все наше внимание на то, что меняется в окружающей обстановке. Это необходимо для того, чтобы легче замечать хищников и находить пищу. Иногда из-за этой адаптации происходят оптические иллюзии. Например, в зависимости от цвета окружающих предметов, мы воспринимаем цвет двух тел по-разному, даже когда они отражают свет с одинаковой длиной волны. На иллюстрации - пример такой оптической иллюзии. Коричневый квадрат в верхней части изображения (второй ряд, вторая колонка) выглядит светлее, чем коричневый квадрат в нижней части рисунка (пятый ряд, вторая колонка). На самом деле, их цвета одинаковы. Даже зная об этом, мы все равно воспринимаем их, как разные цвета. Поскольку наше восприятие цвета устроено так сложно, программистам трудно описать все эти нюансы в алгоритмах для машинного зрения. Несмотря на эти трудности, мы уже достигли многого в этой области.

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Световая волна – электромагнитная волна видимого диапазона длин волн. Частота световой волны определяет цвет. Энергия, переносимая световой волной, пропорциональна квадрату ее амплитуды.

Световые волны охватывают на шкале электромагнитных волн огромный диапазон, лежащий за ультракороткими миллиметровыми радиоволнами и простирающийся до наиболее коротких гамма-лучей – электромагнитных волн с длиной волны ʎ меньшей, чем 0,1 нм (1 нм = 10 -9 м)

Всякая волна распространяется из одной точки в другую не мгновенно, а с определенной скоростью.

Скорость распространения световых и вообще электромагнитных волн в вакууме (а практически и в воздухе) равна приблизительно 300 000 км\с

Вблизи предмета его тень имеет резкие края, однако очертания
тени размываются с увеличением расстояния между предметом
и тенью. Это нетрудно понять, если учесть, что свет распростра-
няется прямолинейно, а каждый источник света имеет конечные
размеры. Изучение распространения световых лучей показывает,
что на краю каждой тени существует частично освещенная об-
ласть. Эта так называемая полутень делает очертания тени раз-
мытыми. Наиболее темная часть тени (глубокая тень) полностью
отгорожена от источника света. Ширина полутени тем меньше,
чем ближе тень к объекту, который ее отбрасывает, поэтому
вблизи предмета тень выглядит более резкой.

Было установлено, что световая волна представляет собой колебания электрического и магнитного полей, распространяющиеся в пространстве; оба поля совершают колебания во взаимно перпендикулярных плоскостях, которые перпендикулярны также и направлению распространения волны. В действительности световые волны являются одним из типов электромагнитных волн, включающих также рентгеновское, ультрафиолетовое, инфракрасное излучения и радиоволны. Световые волны испускаются атомами, когда электроны в них переходят с одной орбиты на другую. Если атом получает энергию, например в форме тепла, света или электрической энергии, электроны удаляются от ядра на орбиты с большей энергией. Затем они вновь переходят на более близкие к ядру орбиты с меньшей энергией, излучая при этом энергию в виде электромагнитных волн. Так возникает свет.

Форма волны -  наглядное представление формы сигнала, такого как волна, распространяющегося в физической среде, или его абстрактное представление.

Во многих случаях среда, в которой распространяется волна, не позволяет наблюдать её форму визуально. В этом случае, термин «сигнал» относится к форме графика величины, изменяющейся по времени или зависящей от расстояния. Для наглядного представления формы волны может использоваться инструмент, называемый «осциллограф», отображающий на экране значение измеряемой величины и его изменение. В более широком смысле термин «сигнал» используется для обозначения формы графика значений любой величины, изменяющейся по времени.

Общими периодическими сигналами являются (t -  время):

· Синусоида: sin (2 π t ). Амплитуда сигнала соответствует тригонометрической функции синуса (sin), изменяющейся по времени.

· Меандр: saw(t ) − saw (t − duty). Этот сигнал как правило используется для представления и передачи цифровых данных. Прямоугольные импульсы с постоянным периодом содержат нечётные гармоники, которые попадают на −6дБ/октаву.

· Треугольная волна: (t − 2 floor ((t + 1) /2)) (−1) floor ((t + 1) /2) . Включает в себя нечётные гармоники, которые попадают на −12дБ/октаву.

· Пилообразная волна: 2 (t − floor(t )) − 1. Выглядит как зубья пилы. Используется в качестве отправной точки cубтрактивного синтеза, так как пилообразная волна с постоянным периодом содержит чётные и нечётные гармоники, которые попадают на −6 дБ/октаву.

Другие формы сигналов часто называют композитными, так как в большинстве случаев они могут быть описаны как сочетание нескольких синусоидальных волн или суммой других базисных функций.

Ряд Фурье описывает разложение периодического сигнала на основе фундаментального принципа, гласящего, что любой периодический сигнал может быть представлен в виде суммы (возможно бесконечной) фундаментальных и гармонических составляющих. Энергетически-конечные непериодические сигналы могут быть проанализированы как синусоиды после преобразования Фурье.

Длина волны (λ) - кратчайшее расстояние между точками волны, колеблющимися в одинаковых фазах. Свет мы воспринимаем глазами. Он является электромагнитной волной с длиной волны (в вакууме) от 760 нм (красный) до 420 нм (фиолетовый). - длина волны. Частота световых колебаний от 4 . 10 14 Гц (фиолетовый) до 7 . 10 14 Гц (красный). Это достаточно узкая полоска на шкале электромагнитных волн. Частота световой волны (длина волны в вакууме) определяет цвет видимого нами света: Синусоида символически показывает частоту (длину волны) соответствующего участка спектра (цвета). Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице: λ - длина световой волны м
с - скорость света м/c
T - период ЭМ колебаний с
ν - частота колебаний световой волны Гц

Колеба́ния - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.

Электромагнитными колебаниями называются периодические изменения напряженности Е и индукции В.

Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

Передача колебаний обусловлена тем, что смежные участки среды связаны между собой. Эта связь может осуществляться различно. Она может быть обусловлена, в частности, силами упругости , возникающими вследствие деформации среды при ее колебаниях. В результате колебание, вызванное каким-либо образом в одном месте, влечет за собой последовательное возникновение колебаний в других местах, все более и более удаленных от первоначального, и возникает так называемая волна.

Электромагнитные волны – эти волны представляют собой передачу из одних мест пространства в другие колебаний электрического и магнитного полей, создаваемых электрическими зарядами и токами. Всякое изменение электрического поля вызывает появление магнитного поля, и обратно, всякое изменение магнитного поля создаёт электрическое поле. Твердая, жидкая или газообразная среда может сильно влиять на распространение электромагнитных волн, но наличие такой среды для этих волн не необходимо. Электромагнитные волны могут распространяться всюду, где может существовать электромагнитное поле, а значит, и в вакууме, т.е. в пространстве, не содержащем атомов.

Всякая волна распространяется из одной точки в другую не мгновенно, а с определенной скоростью.

Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания, так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

Величины, выражающие свойства самой системы (параметры системы): L и m, 1/C и k

величины, характеризующие состояние системы:

величины, выражающие скорость изменения состояния системы: u = x"(t) и i = q"(t) .

Обзор технологий