Что такое raid 1. Практические советы по созданию RAID-массивов на домашних ПК

И прочее, прочее, прочее, прочее. Так вот, сегодня поговорим про RAID массивах на их основе.

Как известно, эти самые жесткие диски так же имеют некий запас прочности после которого выходят из строя, а так же характеристики влияющие на производительность.

Как следствие, наверняка многие из Вас, так или иначе, однажды слышали о неких рейд-массивах, которые можно делать из обычных жестких дисков с целью ушустрения работы этих самых дисков и компьютера в целом или обеспечения повышенной надежности хранения данных.

Наверняка так же Вы знаете (а если и не знаете, то не беда) о том, что эти массивы имеют разные порядковые номера (0, 1, 2, 3, 4 и пр.), а так же выполняют вполне себе различные функции. Оное явление действительно имеет место быть в природе и, как Вы думаю уже догадались, как раз о этих самых RAID массивах я и хочу Вам рассказать в этой статье. Точнее уже рассказываю;)

Поехали.

Что такое RAID и зачем оно нужно?

RAID - это дисковый массив (т.е. комплекс или, если хотите, связка) из нескольких устройств, - жестких дисков. Как я и говорил выше, этот массив служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (или и то и другое).

Собственно, то чем именно занимается оная связка из дисков, т.е ускорением работы или повышением безопасности данных, - зависит от Вас, а точнее, от выбора текущей конфигурации рейда(ов). Разные типы этих конфигураций как раз и отмечаются разными номерами: 1, 2, 3, 4 и, соответственно, выполняют разные функции.

Просто, например, в случае построения 0 -вой версии (описание вариаций 0, 1, 2, 3 и пр., - читайте ниже) Вы получите ощутимый прирост производительности. Да и вообще жесткий диск нынче как раз таки узкий канал в быстродействии системы.

Почему так сложилось в общем и целом

Жесткие диски же растут разве что в объеме ибо скорость оборота головки оных (за исключением редких моделей типа Raptor "ов) замерла уже довольно давно на отметке в 7200 , кэш тоже не то чтобы растет, архитектура остается почти прежней.

В общем в плане производительности диски стоят на месте (ситуацию могут спасти разве что развивающиеся ), а ведь они играют весомую роль в работе системы и, местами, полновесных приложений.

В случае же построения единичного (в смысле за номером 1 ) рейда Вы чуток потеряете в производительности, но зато получите некую ощутимую гарантию безопасности Ваших данных, ибо оные будут полностью дублироваться и, собственно, даже в случае выхода из строя одного диска, - всё целиком и полностью будет находится на втором без всяких потерь.

В общем, повторюсь, рейды будут полезны всем и каждому. Я бы даже сказал, что обязательны:)

Что такое RAID в физическом смысле

Физически RAID -массив представляет собой от двух до n -го количества жестких дисков подключенных поддерживающей возможность создания RAID (или к соответствующему контроллеру, что реже ибо оные дороги для рядового пользователя (контроллеры обычно используются на серверах в силу повышенной надежности и производительности)), т.е. на глаз ничего внутри системника не изменяется, никаких лишних подключений или соединений дисков между собой или с чем-то еще попросту нет.

В общем в аппаратной части всё почти как всегда, а изменяется лишь программный подход, который, собственно, и задает, путем выбора типа рейда, как именно должны работать подключенные диски.

Программно же, в системе, после создания рейда, тоже не появляется никаких особенных причуд. По сути, вся разница в работе с рейдом заключается только в небольшой настройке , которая собственно организует рейд (см.ниже) и в использовании драйвера. В остальном ВСЁ совершенно тоже самое – в "Мой компьютер" те же C, D и прочие диски, всё те же папки, файлы.. В общем и программно, на глаз, полная идентичность.

Установка массива не представляет собой ничего сложного: просто берем мат.плату, которая поддерживает технологию RAID , берем два полностью идентичных, - это важно! , - как по характеристикам (размеру, кэшу, интерфейсу и пр) так и по производителю и модели, диска и подключаем их к оной мат.плате. Далее просто включаем компьютер, заходим в BIOS и выставляем параметр SATA Configuration : RAID .

После этого в процессе загрузки компьютера (как правило, до загрузки Windows ) появляется панель отображающая информацию о диска в рейде и вне него, где, собственно нужно нажать CTR-I , чтобы настроить рейд (добавить диски в него, удалить и тд и тп). Собственно, вот и все. Дальше идет и прочие радости жизни, т.е, опять же, всё как всегда.

Важное примечание, которое стоит помнить

При создании или удалении рейда (1 -го рейда это вроде не касается, но не факт) неизбежно удаляется вся информация с дисков, а посему просто проводить эксперимент, создавая и удаляя различные конфигурации, явно не стоит. Посему, перед созданием рейда предварительно сохраните всю нужную информацию (если она есть), а потом уже экспериментируйте.

Что до конфигураций.. Как я уже говорил, RAID массивов существует несколько видов (как минимум из основного базиса, - это RAID 1, RAID 2, RAID 3, RAID 4, RAID 5, RAID 6 ). Для начала я расскажу о двух, наиболее понятных и популярных среди обычных пользователей:

  • RAID 0 - дисковый массив для увеличения скорости\записи.
  • RAID 1 - зеркальный дисковый массив.

А в конце статьи быстренько пробегусь по прочим.

RAID 0 - что это и с чем его едят?

И так.. RAID 0 (он же, страйп («Striping»)) - используется от двух до четырех (больше, - реже) жестких дисков, которые совместно обрабатывают информацию, что повышает производительность. Чтобы было понятно, - таскать мешки одному человеку дольше и сложнее чем вчетвером (хотя мешки остаются все теми же по своим физ свойствам, меняются лишь мощности с ними взаимодействующие). Программно же, информация на рейде такого типа, разбивается на блоки данных и записывается на оба/несколько дисков поочередно.

Один блок данных на один диск, другой блок данных на другой и тд. Таким образом существенно повышается производительность (от количества дисков зависит кратность увеличения производительности, т.е 4-ые диска будут бегать шустрее чем два), но страдает безопасность данных на всём массиве. При выходе из строя любого из входящих в такой RAID винчестеров (т.е. жестких дисков) практически полностью и безвозвратно пропадает вся информация.

Почему? Дело в том, что каждый файл состоит из некоторого количества байт.. каждый из которых несет в себе информацию. Но в RAID 0 массиве байты одного файла могут быть расположены на нескольких дисках. Соответственно при "смерти" одного из дисков потеряется произвольное количество байтов файла и восстановить его будет просто невозможно. Но файл то не один.

В общем при использовании такого рейд-массива настоятельно рекомендуется делать постоянные ценной информации на внешний носитель. Рейд действительно обеспечивает ощутимую скорость - это я Вам говорю на собственном опыте, т.к у меня дома уже годами установлено такое счастье.

RAID 1 - что такое и с чем его едят?

Что же до RAID 1 (Mirroring - «зеркало»).. Собственно, начну с недостатка. В отличии от RAID 0 получается, что Вы как бы "теряете" объем второго жесткого диска (он используется для записи на него полной (байт в байт) копии первого жесткого диска в то время как RAID 0 это место полностью доступно).

Преимущество же, как Вы уже поняли, в том, что он имеет высокую надежность, т.е все работает (и все данные существуют в природе, а не исчезают с выходом из строя одного из устройств) до тех пор пока функционирует хотя бы один диск, т.е. если даже грубо вывести из строя один диск - Вы не потеряете ни байта информации, т.к. второй является чистой копией первого и заменяет его при выходе из строя. Такой рейд частенько используется в серверах в силу безумнейшей жизнеспособности данных, что важно.

При подобном подходе в жертву приносится производительность и, по личным ощущениям, оная даже меньше чем при использовании одного диска без всяких там рейдов. Впрочем, для некоторых надежность куда важнее производительности.

RAID 2, 3, 4, 5, 6 - что такое и с чем едят их?

Описание этих массивов тут по стольку по скольку, т.е. чисто для справки, да и то в сжатом (по сути описан только второй) виде. Почему так? Как минимум в силу низкой популярности этих массивов среди рядового (да и в общем-то любого другого) пользователя и, как следствие, малого опыта использования оных мною.

RAID 2 зарезервирован для массивов, которые применяют некий код Хемминга (не интересовался что это, посему рассказывать не буду). Принцип работы примерно такой: данные записываются на соответствующие устройства так же, как и в RAID 0 , т.е они разбиваются на небольшие блоки по всем дискам, которые участвуют в хранении информации.

Оставшиеся же (специально выделенные под оное) диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо винчестера из строя возможно восстановление информации. Тобишь в массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок

Например, у Вас два диска являют собой место под систему и файлы, а еще два будут полностью отведены под данные коррекции на случай выхода из строя первых двух дисков. По сути это что-то вроде нулевого рейда, только с возможностью хоть как-то спасти информацию в случае сбоев одного из винчестеров. Редкостно затратно, - четыре диска вместо двух с весьма спорным приростом безопасности.

RAID 3, 4, 5, 6 .. Про них, как бы странно это не звучало на страницах этого сайта, попробуйте почитать на Википедии. Дело в том, что я в жизни сталкивался с этими массивами крайне редко (разве что пятый попадался под руку чаще остальных) и описать доступными словами принципы их работы не могу, а перепечатывать статью, с выше предложенного ресурса решительно не желаю, как минимум, в силу наличия в оных зубодробительных формулировок, которые даже мне понятны со скрипом.

Какой RAID все же выбрать?

Если вы играете в игры, часто копируете музыку, фильмы, устанавливаете ёмкие ресурсопотребляющие программы, то Вам безусловно пригодиться RAID 0 . Но будьте внимательны при выборе жестких дисков, - в этом случае их качество особенно важно, - или же обязательно делайте бэкапы на внешний носитель.

Если же вы работаете с ценной информацией, которую потерять равносильно смерти, то Вам безусловно нужен RAID 1 - с ним потерять информацию крайне сложно.

Повторюсь, что очень желательно, чтобы диски устанавливаемые в RAID массив были пол идентичны. Размер, фирма, серия, объём кэша - всё, желательно, должно быть одинаковым.

Послесловие

Вот такие вот дела.

Кстати, как собрать это чудо я писал в статье: "Как создать RAID-массив штатными методами ", а про пару параметров в материале "RAID 0 из двух SSD, - практические тесты с Read Ahead и Read Cache ". Пользуйтесь поиском.

Искренне надеюсь, что эта статья Вам окажется полезной и Вы обязательно сделаете себе рейд того или иного типа. Поверьте, оное того стоит.

По вопросам создания и настройки оных, в общем-то, можете обращаться ко мне в комментариях, - попробую помочь (при наличии в сети инструкции к Вашей мат.плате). Так же буду рад любым дополнениям, пожеланиям, мыслям и всём таком прочем.

RAID (Redundant Array of Independent Disks) — избыточный массив независимых дисков, т.е. объединение физических жестких дисков в один логический для решения каких либо задач. Скорее всего, вы его будете использовать для отказоустойчивости. При выходе из строя одного из дисков система будет продолжать работать. В операционной системе массив будет выглядеть как обычный HDD. RAID – массивы зародились в сегменте серверных решений, но сейчас получили широкое распространение и уже используются дома. Для управления RAID-ом используется специальная микросхема с интеллектом, которая называется RAID-контроллер. Это либо чипсет на материнской плате, либо отдельная внешняя плата.

Типы RAID массивов

Аппаратный – это когда состоянием массива управляет специальная микросхема. На микросхеме есть свой CPU и все вычисления ложатся на него, освобождая CPU сервера от лишней нагрузки.

Программный – это когда состоянием массива управляет специальная программа в ОС. В этом случае будет создаваться дополнительная нагрузка на CPU сервера. Ведь все вычисления ложатся именно на него.

Однозначно сказать какой тип рейда лучше – нельзя. В случае программного рейда нам не нужно покупать дорогостоящий рейд-контроллер. Который обычно стоит от 250 у.е. (можно найти и за 70 у.е. но я бы не стал рисковать данными) Но все вычисления ложатся на CPU сервера. Программная

реализация хорошо подходит для рейдов 0 и 1. Они достаточно просты и для их работы не нужны большие вычисления. Поэтому программные рейды чаще используют в решениях начального уровня. Аппаратный рейд в своей работе использует рейд-контроллер. Рейд-контроллер имеет свой процессор для вычислений, и именно он производит операции ввода/вывода.

Уровни RAID-массивов

Их достаточно много. Это основные – 0, 1, 2, 3, 4, 5, 6, 7 и комбинированные – 10, 30, 50, 53… Мы рассмотрим только самые ходовые, которые используются в современной инфраструктуре предприятия. Буква D в схемах означает Data (данные), или блок данных.

RAID 0 (Striped Disk Array without Fault Tolerance)

Он же stripe. Это когда два или более физических дисков объединяются в один логический с целью объединения места. То есть берем два диска по 500 Гб, объединяем их в RAID 0 и в системе видим 1 HDD объемом в 1 Тб. Информация распределяется по всем дискам рейда равномерно в виде небольших блоков (страйпов).

Плюсы – Высокая производительность, простота реализации.

Минусы – отсутствие отказоустойчивости. При использование этого рейда надежность системы понижается в два раза (если используем два диска). Ведь при выходе из строя хотя бы одного диска вы теряете все данные.

RAID 1 (Mirroring & Duplexing)

Он же mirror. Это когда два или более физических дисков объединяются в один логический диск с целью повышения отказоустойчивости. Информация пишется сразу на оба диска массива и при выходе одного из них информация сохраняется на другом.

Плюсы – высокая скорость чтения/записи, простота реализации.

Минусы – высокая избыточность. В случае использования 2-х дисков это 100%.

RAID 1E

RAID 1E работает так: три физических диска объединяются в массив, после чего создается логический том. Данные распределяются по дискам, образуя блоки. Порция данных (strip), помеченная ** – это копия предшествующей ей порции *. При этом каждый блок зеркальной копии записывается со сдвигом на один диск

Наиболее простое в реализации из отказоустойчивых решений – это RAID 1 (mirroring), зеркальное отображение двух дисков. Высокая доступность данных гарантирована наличием двух полных копий. Такая избыточность структуры массива сказывается на его стоимости – ведь полезная емкость вдвое меньше используемой. Поскольку RAID 1 строится на двух HDD – этого явно мало современным, прожорливым до дискового пространства приложениям. В силу таких требований область применения RAID 1 обычно ограничивается служебными томами (OS, SWAP, LOG), для размещения пользовательских данных ими пользуются разве что в малобюджетных решениях.

RAID 1E – это комбинация распределения информации по дискам (striping) от RAID 0 и зеркалирования – от RAID 1. Одновременно с записью области данных на один накопитель создается их копия на следующем диске массива. Отличие от RAID 1 в том, что количество HDD может быть нечетным (минимум 3). Как и в случае с RAID 1, полезная емкость составляет 50% суммарной емкости дисков массива. Правда, если количество дисков четное, предпочтительней использовать RAID 10, который при той же утилизации емкости состоит из двух (или больше) «зеркал». При физическом отказе одного из дисков RAID 1E контроллер переключает запросы чтения и записи на оставшиеся диски массива.

Преимущества:

  • высокая защищенность данных;
  • неплохая производительность.

Недостатки:

  • как и в RAID 1, используется лишь 50% емкости дисков массива.

RAID 2

В массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок, причем если данные хранятся на дисках, то для хранения кодов коррекции необходимо дисков. Данные записываются на соответствующие диски так же, как и в RAID 0, они разбиваются на небольшие блоки по числу дисков, предназначенных для хранения информации. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хемминга давно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

Недостаток массива RAID 2 в том, что для его функционирования нужна структура из почти двойного количества дисков, поэтому такой вид массива не получил распространения.

RAID 3

В массиве RAID 3 из дисков данные разбиваются на куски размером меньше сектора (разбиваются на байты) или блока и распределяются по дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

Достоинства:

  • высокая скорость чтения и записи данных;
  • минимальное количество дисков для создания массива равно трём.

Недостатки:

  • массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.
  • большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.

RAID 4

RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL.

RAID 5 (Independent Data Disks with Distributed Parity Blocks)

Самый популярный вид рейд-массива, в целом благодаря экономичности использования носителей данных. Блоки данных и контрольные суммы циклически записываются на все диски массива. При выходе из строя одного из дисков будет заметно снижена производительность, так как придется совершать дополнительные манипуляции для функционирования массива. Сам по себе рейд имеет достаточно хорошую скорость чтения/записи но немного уступает RAID 1. Нужно не менее трех дисков чтобы организовать RAID 5.

Плюсы – экономичное использование носителей, хорошая скорость чтения/записи. Разница в производительности по сравнению с RAID 1 не так сильно видна как экономия дискового пространства. В случае использования трех HDD избыточность составляет всего 33%.

Минусы – сложное восстановление данных и реализация.

RAID 5E

RAID 5E работает так. Из четырех физических дисков собирается массив, в нем создается логический диск. Распределенный резервный диск – это свободное пространство. Данные распределяются по накопителям, создавая блоки на логическом диске. Контрольные суммы также распределяются по дискам массива и записываются со сдвигом от диска к диску, как и в RAID 5. Резервный HDD остается пустым.

«Классический» RAID 5 много лет считается стандартом отказоустойчивости дисковых подсистем. В нем применяется распределение данных (striping) по HDD массива, для каждой из порций (stripe), определенной в нем, вычисляются и записываются контрольные суммы (четность, parity). Соответственно, скорость записи снижается из-за постоянного пересчета КС с поступлением новых данных. Для увеличения производительности записи КС распределяются по всем накопителям массива, чередуясь с данными. Под хранение КС расходуется емкость одного носителя, поэтому RAID 5 утилизирует на один диск меньше их общего количества в массиве. RAID 5 требует минимум трех (и максимум 16) НЖМД, его КПД использования дискового пространства находится в диапазоне 67–94% в зависимости от числа дисков. Очевидно, что это больше, чем у RAID 1, утилизирующего 50% доступной емкости.

Малые накладные расходы для реализации избыточности RAID 5 оборачиваются достаточно сложной реализацией и длительным процессом восстановления данных. Подсчет контрольных сумм и адресов возлагается на аппаратный RAID-контроллер с высокими требованиями к его процессору, логике и кэш-памяти. Производительность массива RAID 5 в его деградированном состоянии крайне низка, а время восстановления измеряется часами. В итоге проблема неполноценности массива усугубляется рисками повторного отказа одного из дисков до того момента, когда RAID будет восстановлен. Это приводит к разрушению тома данных.

Распространен подход c включением в RAID 5 выделенного диска горячего резерва (hot-spare) – для снижения времени простоя до физической замены сбойного диска. После отказа одного из накопителей исходного массива контроллер включает резервный диск в массив и начинает процесс перестройки RAID. Важно уточнить, что до этого первого отказа резервный накопитель работает на холостом ходу, годами может не участвовать в функционировании массива и не проверяться на ошибки поверхности. Равно как и тот, который позже принесут по гарантийной замене вместо сбойного, вставят в дисковую корзину и назначат резервным. Большим сюрпризом может стать его неработоспособность, причем выяснится это в самый неподходящий момент.

RAID 5E – это RAID 5 с включенным в массив резервным диском (hot-spare) постоянного использования, емкость которого добавляется поровну к каждому элементу массива. Для RAID 5E требуется минимум четыре HDD. Как и у RAID 5, данные и контрольные суммы распределяются по дискам массива. Утилизация полезной емкости у RAID 5E несколько ниже, зато производительность выше, чем у RAID 5 c hot-spare.

Емкость логического тома RAID 5E меньше общей емкости на объем двух носителей (емкость одного уходит под контрольные суммы, второго – под hot-spare). Зато чтение и запись на четыре физических устройства RAID 5E быстрее операций с тремя физическими накопителями RAID 5 с классическим hot-spare (в то время как четвертый, hot-spare, участия в работе не принимает). Резервный диск в RAID 5E – полноправный постоянный член массива. Его невозможно назначить резервным двум разным массивам («слугой двух господ» – как это допускается в RAID 5).

При отказе одного из физических дисков данные со сбойного накопителя восстанавливаются. Массив подвергается сжатию, и распределенный резервный диск становится частью массива. Логический диск остается уровня RAID 5E. После замены сбойного диска на новый данные логического диска разворачиваются в исходное состояние схемы распределения по HDD. При использовании логического диска RAID 5E в отказоустойчивых кластерных схемах он не будет выполнять свои функции во время компрессии-декомпрессии данных.

Преимущества:

  • высокая защищенность данных;
  • утилизация полезной емкости выше, чем у RAID 1 или RAID 1E;
  • производительность выше, чем у RAID 5.

Недостатки:

  • производительность ниже, чем у RAID 1E;
  • не может делить резервный диск с другими массивами.

RAID 5EE

Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, емкость логического тома ограничивается емкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их емкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

Достоинства:

  • 100% защита данных
  • Большая емкость физических дисков по сравнению с RAID-1 или RAID -1E
  • Большая производительность по сравнению с RAID-5
  • Более быстрое восстановление RAID по сравнению с RAID-5Е

Недостатки:

  • Более низкая производительность, чем в RAID-1 или RAID-1E
  • Поддержка только одного логического тома на массив
  • Невозможность совместного использования резервного диска с другими массивами
  • Поддержка не всех контроллеров

RAID 6

RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

RAID 7

RAID 7 — зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП; в случае перебоев с питанием происходит повреждение данных.

RAID 10 или RAID 1+0 (Very High Reliability with High Performance)

Сочетание зеркального рейда и рейда с чередованием дисков. В работе этого вида рейда диски объединяются парами в зеркальные рейды (RAID 1) а затем все эти зеркальные пары объединяются в массив с чередованием (RAID 0). В рейд можно объединить только четное количество дисков, минимум – 4, максимум – 16. От RAID 1 мы наследуем надежность, от RAID 0 — скорость.

Плюсы – высокая отказоустойчивость и производительность

Минусы – высокая стоимость

RAID 50 или RAID 5+0 (High I/O Rates & Data Transfer Performance)

Он же RAID 50, это сочетание RAID 5 и RAID 0. Массив объединяет в себе высокую производительность и отказоустойчивость.

Плюсы – высокая отказоустойчивость, скорость передачи данных и выполнение запросов

Минусы – высокая стоимость

RAID 60

RAID-массив уровня 60 объединены характеристики из уровней 6 и 0. RAID 60 массива объединяет прямой уровне блоков чередование RAID 0 с распределенной дважды паритет в RAID 6, а именно: массива RAID 0 распределяются среди RAID 6 элементов. RAID 60 виртуальный диск может выжить о потере двух жестких дисков в каждом из RAID 6 устанавливает без потери данных. Она является наиболее эффективной с данными, нужна высокая надежность, высокая запрос курсы, высокие передачу данных, и средних и крупных емкости. Минимальное количество дисков-8.

Линейный RAID

Линейный RAID представляет собой простое объединение дисков, создающее большой виртуальный диск. В линейном RAID, блоки выделяются сначала на одном диске, включенном в массив, затем, если этот заполнен, на другом и т.д. Такое объединение не даёт выигрыша в производительности, так как скорее всего операции ввода/вывода не будут распределены между дисками. Линейный RAID также не содержит избыточности и, в действительности, увеличивает вероятность сбоя - если всего одни диск откажет, весь массив выйдет из строя. Ёмкость массива равняется суммарной ёмкости всех дисков.

Главный вывод, который можно сделать – у каждого уровня рейда есть свои плюсы и минусы.

Еще главнее вывод – рейд не гарантирует целостности ваших данных. То есть если кто-то удалит файл или он будет поврежден, каким либо процессом, рейд нам не поможет. Поэтому рейд не освобождает нас от необходимости делать бекапы. Но помогает, когда возникают проблемы с дисками на физическом уровне.

Сегодня мы поговорим о RAID-массивах . Разберемся, что это такое, зачем это нам надо, какое оно бывает и как все это великолепие использовать на практике.

Итак, по порядку: что такое RAID-массив или просто RAID ? Расшифровывается эта аббревиатура как "Redundant Array of Independent Disks" или "избыточный (резервный) массив независимых дисков". Говоря по-простому, RAID-массив это совокупность физических дисков, объединенных в один логический.

Обычно бывает наоборот - в системный блок установлен один физический диск, который мы разбиваем на несколько логических. Здесь обратная ситуация - несколько жестких дисков сначала объединяются в один, а потом операционной системой воспринимаются как один. Т.е. ОС свято уверена, что у нее физически только один диск.

RAID-массивы бывают аппаратные и программные.

Аппаратные RAID-массивы создаются до загрузки ОС посредством специальных утилит, зашитых в RAID-контроллер - нечто вроде BIOS. В результате создания такого RAID-массива уже на стадии инсталляции ОС, дистрибутив "видит" один диск.

Программные RAID-массивы создаются средствами ОС. Т.е. во время загрузки операционная система "понимает", что у нее несколько физических дисков и только после старта ОС, посредством программного обеспечения диски объединяются в массивы. Естественно сама операционная система располагается не на RAID-массиве , поскольку устанавливается до его создания.

"Зачем все это нужно?" - спросите Вы? Отвечаю: для повышения скорости чтения/записи данных и/или повышения отказоустойчивости и безопасности.

"Каким образом RAID-массив может увеличить скорость или обезопасить данные?" - для ответа на этот вопрос рассмотрим основные типы RAID-массивов , как они формируются и что это дает в результате.

RAID-0 . Называемый так же "Stripe" или "Лента". Два или более жестких дисков объединяются в один путем последовательного слияния и суммирования объемов. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-0 , операционной системой это будет восприниматься как один диск объемом в терабайт. При этом скорость чтения/записи у этого массива будет вдвое больше, нежели у одного диска, поскольку, например, если база данных расположена таким образом физически на двух дисках, один пользователь может производить чтения данных с одного диска, а другой пользователь производить запись на другой диск одновременно. В то время как в случае расположения базы на одном диске, сам жесткий диск задачи чтения/записи разных пользователей будет выполнять последовательно. RAID-0 позволит выполнять чтение/запись параллельно. Как следствие - чем больше дисков в массиве RAID-0 , тем быстрее работает сам массив. Зависимость прямопропорциональная - скорость возрастается в N раз, где N - количество дисков в массиве.
У массива RAID-0 есть только один недостаток, который перекрывает все плюсы от его использования - полное отсутствие отказоустойчивости. В случае смерти одного из физических дисков массива, умирает весь массив. Есть старая шутка на эту тему: "Что обозначает "0" в названии RAID-0 ? - объем восстанавливаемой информации после смерти массива!"

RAID-1 . Называемый так же "Mirror" или "Зеркало". Два или более жестких дисков объединяются в один путем параллельного слияния. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-1 , операционной системой это будет восприниматься как один диск объемом в 500Гб. При этом скорость чтения/записи у этого массива будет такая же, как у одного диска, поскольку, чтение/запись информации производятся на оба диска одновременно. RAID-1 не дает выигрыша в скорости, однако обеспечивает большую отказоустойчивость, поскольку в случае смерти одного из жестких дисков, всегда есть полный дубль информации, находящийся на втором диске. При этом необходимо помнить, что отказоустойчивость обеспечивается только от смерти одного из дисков массива. В случае если данные были удалены целенаправленно, то они удаляются со всех дисков массива одновременно!

RAID-5 . Более безопасный вариант RAID-0. Объем массива рассчитывается по формуле (N - 1) * DiskSize RAID-5 из трех дисков по 500Гб, мы получим массив объемом в 1 терабайт. Суть массива RAID-5 в том, что несколько дисков объединятся в RAID-0, а на последнем диске хранится так называемая "контрольная сумма" - служебная информация, предназначенная для восстановления одного из дисков массива, в случае его смерти. Скорость записи в массиве RAID-5 несколько ниже, поскольку тратится время на расчет и запись контрольной суммы на отдельный диск, зато скорость чтения такая же, как в RAID-0.
Если один из дисков массива RAID-5 умирает, резко падает скорость чтения/записи, поскольку все операции сопровождаются дополнительными манипуляциями. Фактически RAID-5 превращается в RAID-0 и если своевременно не позаботиться восстановлением RAID-массива есть существенный риск потерять данные полностью.
С массивом RAID-5 можно использовать так называемый Spare-диск, т.е. запасной. Во время стабильной работы RAID-массива этот диск простаивает и не используется. Однако в случае наступления критической ситуации, восстановление RAID-массива начинается автоматически - на запасной диск восстанавливается информация с поврежденного с помощью контрольных сумм, расположенных на отдельном диске.
RAID-5 создается как минимум из трех дисков и спасает от одиночных ошибок. В случае одновременного появления разных ошибок на разных дисках RAID-5 не спасает.

RAID-6 - является улучшенным вариантом RAID-5. Суть та же самая, только для контрольных сумм используется уже не один, а два диска, причем контрольные суммы считаются с помощью разных алгоритмов, что существенно повышает отказоустойчивость всего RAID-массива в целом. RAID-6 собирается минимум из четырех дисков. Формула расчета объема массива выглядит как (N - 2) * DiskSize , где N - количество дисков в массиве, а DiskSize - объем каждого диска. Т.е. при создании RAID-6 из пяти дисков по 500Гб, мы получим массив объемом в 1,5 терабайта.
Скорость записи RAID-6 ниже чем у RAID-5 примерно на 10-15%, что обусловлено дополнительными временными затратами на расчет и запись контрольных сумм.

RAID-10 - так же иногда называется RAID 0+1 или RAID 1+0 . Представляет собой симбиоз RAID-0 и RAID-1. Массив строится минимум из четырех дисков: на первом канале RAID-0, на втором RAID-0 для повышения скорости чтения/записи и между собой они в зеркале RAID-1 для повышения отказоустойчивости. Таким образом, RAID-10 совмещает в себе плюс первых двух вариантов - быстрый и отказоустойчивый.

RAID-50 - аналогично RAID-10 является симбиозом RAID-0 и RAID-5 - фактически строится RAID-5, только его составляющими элементами являются не самостоятельные жесткие диски, а массивы RAID-0. Таким образом, RAID-50 дает очень хорошую скорость чтения/записи и содержит устойчивость и надежность RAID-5.

RAID-60 - та же самая идея: фактически имеем RAID-6, собранный из нескольких массивов RAID-0.

Так же существуют другие комбинированные массивы RAID 5+1 и RAID 6+1 - они похожи на RAID-50 и RAID-60 с той лишь разницей, что базовыми элементами массива являются не ленты RAID-0, а зеркала RAID-1.

Как Вы сами понимаете комбинированные RAID-массивы: RAID-10 , RAID-50 , RAID-60 и варианты RAID X+1 являются прямыми наследниками базовых типов массивов RAID-0 , RAID-1 , RAID-5 и RAID-6 и служат только для повышения либо скорости чтения/записи, либо повышения отказоустойчивости, неся при этом в себе функционал базовых, родительских типов RAID-массивов .

Если перейти к практике и поговорить о применении тех или иных RAID-массивов в жизни, то логика довольно проста:

RAID-0 в чистом виде не используем вообще;

RAID-1 используем там, где не особо важна скорость чтения/записи, но важна отказоустойчивость - например на RAID-1 хорошо ставить операционные системы. В таком случае к дискам никто кроме ОС не обращается, скорости самих жестких дисков для работы вполне достаточно, отказоустойчивость обеспечена;

RAID-5 ставим там, где нужна скорость и отказоустойчивость, но не хватает денег на покупку большего количества жестких дисков или есть необходимость восстанавливать массивы в случае их повреждения, не прекращая работы - тут нам помогут запасные Spare-диски. Обычное применение RAID-5 - хранилища данных;

RAID-6 используется там, где просто страшно или есть реальная угроза смерти сразу нескольких дисков в массиве. На практике встречается достаточно редко, в основном у параноиков;

RAID-10 - используется там, где нужно чтобы работало быстро и надежно. Так же основным направлением для использования RAID-10 являются файловые серверы и серверы баз данных.

Опять же, если еще упростить, то приходим к выводу, что там где нет большой и объемной работы с файлами вполне достаточно RAID-1 - операционная система, AD, TS, почта, прокси и т.д. Там же, где требуется серьезная работа с файлами: RAID-5 или RAID-10 .

Идеальным решением для сервера баз данных представляется машина с шестью физическими дисками, два из которых объединены в зеркало RAID-1 и на нем установлена ОС, а оставшиеся четыре объединены в RAID-10 для быстрой и надежной работы с данными.

Если прочитав, все вышеизложенное Вы решили установить на своих серверах RAID-массивы , но не знаете, как это делать и с чего начать - обращайтесь к нам ! - мы поможем подобрать необходимое оборудование, а так же проведем инсталляционные работы по внедрению RAID-массивов .

Проблема повышения надежности хранения информации и одновременного увеличения производительности системы хранения данных занимает умы разработчиков компьютерной периферии уже давно. Относительно повышения надежности хранения все понятно: информация - это товар, и нередко очень ценный. Для защиты от потери данных придумано немало способов, наиболее известный и надежный из которых - это резервное копирование информации.

Вопрос повышения производительности дисковой подсистемы весьма сложен. Рост вычислительных мощностей современных процессоров привел к тому, что наблюдается явный дисбаланс между возможностями жестких дисков и потребностями процессоров. При этом не спасают ни дорогие SCSI-диски, ни уж тем более IDE-диски. Однако если не хватает возможностей одного диска, то, может быть, отчасти решить данную проблему позволит наличие нескольких дисков? Конечно, само по себе наличие двух или более жестких дисков на компьютере или на сервере дела не меняет - нужно заставить эти диски работать совместно (параллельно) друг с другом так, чтобы это позволило повысить производительность дисковой подсистемы на операциях записи/чтения. Кроме того, нельзя ли, используя несколько жестких дисков, добиться повышения не только производительности, но и надежности хранения данных, чтобы выход из строя одного из дисков не приводил к потере информации? Именно такой подход был предложен еще в 1987 году американскими исследователями Паттерсоном, Гибсоном и Катцом из Калифорнийского университета Беркли. В своей статье «A Case for Redundant Arrays of Inexpensive Discs, RAID» («избыточный массив недорогих дисков») они описали, каким образом можно объединить несколько дешевых жестких дисков в одно логическое устройство так, чтобы в результате повышались емкость и быстродействие системы, а отказ отдельных дисков не приводил к отказу всей системы.

С момента выхода статьи прошло уже 15 лет, но технология построения RAID-массивов не утратила актуальности и сегодня. Единственное, что изменилось с тех пор, - это расшифровка аббревиатуры RAID. Дело в том, что первоначально RAID-массивы строились вовсе не на дешевых дисках, поэтому слово Inexpensive (недорогие) поменяли на Independent (независимые), что больше соответствовало действительности.

Более того, именно сейчас технология RAID получила широкое распространение. Так, если еще несколько лет назад RAID-массивы использовались в дорогостоящих серверах масштаба предприятия с применением SCSI-дисков, то сегодня они стали своеобразным стандартом де-факто даже для серверов начального уровня. Кроме того, постепенно расширяется и рынок IDE RAID-контроллеров, то есть актуальность приобретает задача построения RAID-массивов на рабочих станциях с использованием дешевых IDE-дисков. Так, некоторые производители материнских плат (Abit, Gigabyte) уже начали интегрировать IDE RAID-контроллеры на сами платы.

Итак, RAID - это избыточный массив независимых дисков (Redundant Arrays of Independent Discs), на который возлагается задача обеспечения отказоустойчивости и повышения производительности. Отказоустойчивость достигается за счет избыточности. То есть часть емкости дискового пространства отводится для служебных целей, становясь недоступной для пользователя.

Повышение производительности дисковой подсистемы обеспечивается одновременной работой нескольких дисков, и в этом смысле чем больше дисков в массиве (до определенного предела), тем лучше.

Совместную работу дисков в массиве можно организовать с использованием либо параллельного, либо независимого доступа.

При параллельном доступе дисковое пространство разбивается на блоки (полоски) для записи данных. Аналогично информация, подлежащая записи на диск, разбивается на такие же блоки. При записи отдельные блоки записываются на различные диски (рис. 1), причем запись нескольких блоков на различные диски происходит одновременно, что и приводит к увеличению производительности в операциях записи. Нужная информация также считывается отдельными блоками одновременно с нескольких дисков (рис. 2), что также способствует росту производительности пропорционально количеству дисков в массиве.

Следует отметить, что модель с параллельным доступом реализуется только при условии, что размер запроса на запись данных больше размера самого блока. В противном случае реализовать параллельную запись нескольких блоков просто невозможно. Представим ситуацию, когда размер отдельного блока составляет 8 Кбайт, а размер запроса на запись данных - 64 Кбайт. В этом случае исходная информация нарезается на восемь блоков по 8 Кбайт каждый. Если имеется массив из четырех дисков, то одновременно можно записать четыре блока, или 32 Кбайт, за один раз. Очевидно, что в рассмотренном примере скорость записи и скорость считывания окажется в четыре раза выше, чем при использовании одного диска. Однако такая ситуация является идеальной, поскольку далеко не всегда размер запроса кратен размеру блока и количеству дисков в массиве.

Если же размер записываемых данных меньше размера блока, то реализуется принципиально иная модель доступа - независимый доступ. Более того, эта модель может быть реализована и в том случае, когда размер записываемых данных больше размера одного блока. При независимом доступе все данные отдельного запроса записываются на отдельный диск, то есть ситуация идентична работе с одним диском. Преимущество модели с параллельным доступом в том, что при одновременном поступлении нескольких запросов на запись (чтение) все они будут выполняться независимо, на отдельных дисках (рис. 3). Подобная ситуация типична, например, в серверах.

В соответствии с различными типами доступа существуют и различные типы RAID-массивов, которые принято характеризовать уровнями RAID. Кроме типа доступа, уровни RAID различаются способом размещения и формирования избыточной информации. Избыточная информация может либо размещаться на специально выделенном диске, либо перемешиваться между всеми дисками. Способов формирования этой информации несколько больше. Простейший из них - это полное дублирование (100-процентная избыточность), или зеркалирование. Кроме того, используются коды с коррекцией ошибок, а также вычисление четности.

Уровни RAID

В настоящее время существует несколько стандартизированных RAID-уровней: от RAID 0 до RAID 5. К тому же используются комбинации этих уровней, а также фирменные уровни (например, RAID 6, RAID 7). Наиболее распространенными являются уровни 0, 1, 3 и 5.

RAID 0

RAID уровня 0, строго говоря, не является избыточным массивом и соответственно не обеспечивает надежности хранения данных. Тем не менее данный уровень находит широкое применение в случаях, когда необходимо обеспечить высокую производительность дисковой подсистемы. Особенно популярен этот уровень в рабочих станциях. При создании RAID-массива уровня 0 информация разбивается на блоки, которые записываются на отдельные диски (рис. 4), то есть создается система с параллельным доступом (если, конечно, размер блока это позволяет). Благодаря возможности одновременного ввода-вывода с нескольких дисков RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, поскольку не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. В основном RAID 0 применяется в тех областях, где требуется быстрая передача большого объема данных.

RAID 1 (Mirrored disk)

RAID уровня 1 - это массив дисков со 100-процентной избыточностью. То есть данные при этом просто полностью дублируются (зеркалируются), за счет чего достигается очень высокий уровень надежности (как, впрочем, и стоимости). Отметим, что для реализации уровня 1 не требуется предварительно разбивать диски и данные на блоки. В простейшем случае два диска содержат одинаковую информацию и являются одним логическим диском (рис. 5). При выходе из строя одного диска его функции выполняет другой (что абсолютно прозрачно для пользователя). Кроме того, этот уровень удваивает скорость считывания информации, так как эта операция может выполняться одновременно с двух дисков. Такая схема хранения информации используется в основном в тех случаях, когда цена безопасности данных намного выше стоимости реализации системы хранения.

RAID 2

RAID уровня 2 - это схема резервирования данных с использованием кода Хэмминга (смотри ниже) для коррекции ошибок. Записываемые данные формируются не на основе блочной структуры, как в RAID 0, а на основе слов, причем размер слова равен количеству дисков для записи данных в массиве. Если, к примеру, в массиве имеется четыре диска для записи данных, то размер слова равен четырем дискам. Каждый отдельный бит слова записывается на отдельный диск массива. Например, если массив имеет четыре диска для записи данных, то последовательность четырех бит, то есть слово, запишется на массив дисков таким образом, что первый бит окажется на первом диске, второй бит - на втором и т.д.

Кроме того, для каждого слова вычисляется код коррекции ошибок (ECC), который записывается на выделенные диски для хранения контрольной информации (рис. 6). Их число равно количеству бит в контрольном слове, причем каждый бит контрольного слова записывается на отдельный диск. Количество бит в контрольном слове и соответственно необходимое количество дисков для хранения контрольной информации рассчитывается на основе следующей формулы: где K - разрядность слова данных.

Естественно, что L при вычислении по указанной формуле округляется в большую сторону до ближайшего целого числа. Впрочем, чтобы не связываться с формулами, можно воспользоваться другим мнемоническим правилом: разрядность контрольного слова определяется количеством разрядов, необходимым для двоичного представления размера слова. Если, например, размер слова равен четырем (в двоичной записи 100), то, чтобы записать это число в двоичном виде, потребуется три разряда, значит, размер контрольного слова равен трем. Следовательно, если имеется четыре диска для хранения данных, то потребуется еще три диска для хранения контрольных данных. Аналогично при наличии семи дисков для данных (в двоичной записи 111) понадобится три диска для хранения контрольных слов. Если же под данные отводится восемь дисков (в двоичной записи 1000), то нужно уже четыре диска для контрольной информации.

Код Хэмминга, формирующий контрольное слово, основан на использовании поразрядной операции «исключающего ИЛИ» (XOR) (употребляется также название «неравнозначность»). Напомним, что логическая операция XOR дает единицу при несовпадении операндов (0 и 1) и нуль при их совпадении (0 и 0 или 1 и 1).

Само контрольное слово, полученное по алгоритму Хэмминга, - это инверсия результата поразрядной операции исключающего ИЛИ номеров тех информационных разрядов слова, значения которых равны 1. Для иллюстрации рассмотрим исходное слово 1101. В первом (001), третьем (011) и четвертом (100) разрядах этого слова стоит единица. Поэтому необходимо провести поразрядную операцию исключающего ИЛИ для этих номеров разрядов:

Само же контрольное слово (код Хэмминга) получается при поразрядном инвертировании полученного результата, то есть равно 001.

При считывании данных вновь рассчитывается код Хэмминга и сравнивается с исходным кодом. Для сравнения двух кодов используется поразрядная операция «исключающего ИЛИ». Если результат сравнения во всех разрядах равен нулю, то считывание верное, в противном случае его значение есть номер ошибочно принятого разряда основного кода. Пусть, к примеру, исходное слово равно 1100000. Поскольку единицы стоят в шестой (110) и седьмой (111) позициях, контрольное слово равно:

Если при считывании зафиксировано слово 1100100, то контрольное слово для него равно 101. Сравнивая исходное контрольное слово с полученным (поразрядная операция исключающего ИЛИ), имеем:

то есть ошибка при считывании в третьей позиции.

Соответственно, зная, какой именно бит является ошибочным, его легко исправить «на лету».

RAID 2 - один из немногих уровней, позволяющих не только исправлять «на лету» одиночные ошибки, но и обнаруживать двойные. При этом он является самым избыточным из всех уровней с кодами коррекции. Эта схема хранения данных применяется редко, поскольку плохо справляется с большим количеством запросов, сложна в организации и обладает незначительными преимуществами перед уровнем RAID 3.

RAID 3

RAID уровня 3 - это отказоустойчивый массив с параллельным вводом-выводом и одним дополнительным диском, на который записывается контрольная информация (рис. 7). При записи поток данных разбивается на блоки на уровне байт (хотя возможно и на уровне бит) и записывается одновременно на все диски массива, кроме выделенного для хранения контрольной информации. Для вычисления контрольной информации (называемой также контрольной суммой) используется операция «исключающего ИЛИ» (XOR), применяемая к записываемым блокам данных. При выходе из строя любого диска данные на нем можно восстановить по контрольным данным и данным, оставшимся на исправных дисках.

Рассмотрим в качестве иллюстрации блоки размером по четыре бита. Пусть имеются четыре диска для хранения данных и один диск для записи контрольных сумм. Если имеется последовательность бит 1101 0011 1100 1011, разбитая на блоки по четыре бита, то для расчета контрольной суммы необходимо выполнить операцию:

Таким образом, контрольная сумма, записываемая на пятый диск, равна 1001.

Если один из дисков, например третий, вышел из строя, то блок 1100 окажется недоступным при считывании. Однако его значение легко восстановить по контрольной сумме и значениям остальных блоков, используя все ту же операцию «исключающего ИЛИ»:

Блок 3=Блок 1Блок 2Блок 4

Контрольная сумма.

В нашем примере получим:

Блок 3=1101001110111001= 1100.

RAID уровня 3 имеет намного меньшую избыточность, чем RAID 2. Благодаря разбиению данных на блоки RAID 3 имеет высокую производительность. При считывании информации не производится обращение к диску с контрольными суммами (в случае отсутствия сбоя), что происходит всякий раз при операции записи. Поскольку при каждой операции ввода-вывода производится обращение практически ко всем дискам массива, одновременная обработка нескольких запросов невозможна. Данный уровень подходит для приложений с файлами большого объема и малой частотой обращений. Кроме того, к достоинствам RAID 3 относятся незначительное снижение производительности при сбое и быстрое восстановление информации.

RAID 4

RAID уровня 4 - это отказоустойчивый массив независимых дисков с одним диском для хранения контрольных сумм (рис. 8). RAID 4 во многом схож с RAID 3, но отличается от последнего прежде всего значительно большим размером блока записываемых данных (большим, чем размер записываемых данных). В этом и есть главное различие между RAID 3 и RAID 4. После записи группы блоков вычисляется контрольная сумма (точно так же, как и в случае RAID 3), которая записывается на выделенный для этого диск. Благодаря большему, чем у RAID 3, размеру блока возможно одновременное выполнение нескольких операций чтения (схема независимого доступа).

RAID 4 повышает производительность передачи файлов малого объема (за счет распараллеливания операции считывания). Но поскольку при записи должна вычисляться контрольная сумма на выделенном диске, одновременное выполнение операций здесь невозможно (налицо асимметричность операций ввода и вывода). Рассматриваемый уровень не обеспечивает преимущества в скорости при передаче данных большого объема. Эта схема хранения разрабатывалась для приложений, в которых данные изначально разбиты на небольшие блоки, поэтому нет необходимости дополнительно их разбивать. RAID 4 представляет собой неплохое решение для файл-серверов, информация с которых преимущественно считывается и редко записывается. Эта схема хранения данных имеет невысокую стоимость, но ее реализация достаточно сложна, как и восстановление данных при сбое.

RAID 5

RAID уровня 5 - это отказоустойчивый массив независимых дисков с распределенным хранением контрольных сумм (рис. 9). Блоки данных и контрольные суммы, которые рассчитываются точно так же, как и в RAID 3, циклически записываются на все диски массива, то есть отсутствует выделенный диск для хранения информации о контрольных суммах.

В случае RAID 5 все диски массива имеют одинаковый размер, однако общая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 10 Гбайт, то фактический размер массива составляет 40 Гбайт, так как 10 Гбайт отводится на контрольную информацию.

RAID 5, так же как и RAID 4, имеет архитектуру независимого доступа, то есть в отличие от RAID 3 здесь предусмотрен большой размер логических блоков для хранения информации. Поэтому, как и в случае с RAID 4, основной выигрыш такой массив обеспечивает при одновременной обработке нескольких запросов.

Главным же различием между RAID 5 и RAID 4 является способ размещения контрольных сумм.

Наличие отдельного (физического) диска, хранящего информацию о контрольных суммах, здесь, как и в трех предыдущих уровнях, приводит к тому, что операции считывания, не требующие обращения к этому диску, выполняются с большой скоростью. Однако при каждой операции записи меняется информация на контрольном диске, поэтому схемы RAID 2, RAID 3 и RAID 4 не позволяют проводить параллельные операции записи. RAID 5 лишен этого недостатка, поскольку контрольные суммы записываются на все диски массива, что обеспечивает возможность выполнения нескольких операций считывания или записи одновременно.

Практическая реализация

Для практической реализации RAID-массивов необходимы две составляющие: собственно массив жестких дисков и RAID-контроллер. Контроллер выполняет функции связи с сервером (рабочей станцией), генерации избыточной информации при записи и проверки при чтении, распределения информации по дискам в соответствии с алгоритмом функционирования.

Конструктивно контроллеры бывают как внешние, так и внутренние. Имеются также интегрированные на материнской плате RAID-контроллеры. Кроме того, контроллеры различаются поддерживаемым интерфейсом дисков. Так, SCSI RAID-контроллеры предназначены для использования в серверах, а IDE RAID-контроллеры подходят как для серверов начального уровня, так и для рабочих станций.

Отличительной характеристикой RAID-контроллеров является количество поддерживаемых каналов для подключения жестких дисков. Несмотря на то что к одному каналу контроллера можно подключить несколько SCSI-дисков, общая пропускная способность RAID-массива будет ограничена пропускной способностью одного канала, которая соответствует пропускной способности SCSI-интерфейса. Таким образом, использование нескольких каналов может существенно повысить производительность дисковой подсистемы.

При использовании IDE RAID-контроллеров проблема многоканальности встает еще острее, поскольку два жестких диска, подключенных к одному каналу (большее количество дисков не поддерживается самим интерфейсом), не могут обеспечить параллельную работу - IDE-интерфейс позволяет обращаться в определенный момент времени только к одному диску. Поэтому IDE RAID-контроллеры должны быть как минимум двухканальными. Бывают также четырех- и даже восьмиканальные контроллеры.

Другим различием между IDE RAID- и SCSI RAID-контроллерами является количество поддерживаемых ими уровней. SCSI RAID-контроллеры поддерживают все основные уровни и, как правило, еще несколько комбинированных и фирменных уровней. Набор уровней, поддерживаемых IDE RAID-контроллерами, значительно скромнее. Обычно это нулевой и первый уровни. Кроме того, встречаются контроллеры, поддерживающие пятый уровень и комбинацию первого и нулевого: 0+1. Такой подход вполне закономерен, поскольку IDE RAID-контроллеры предназначены в первую очередь для рабочих станций, поэтому основной упор делается на повышение сохранности данных (уровень 1) или производительности при параллельном вводе-выводе (уровень 0). Схема независимых дисков в данном случае не нужна, так как в рабочих станциях поток запросов на запись/чтение значительно ниже, чем, скажем, в серверах.

Основной функцией RAID-массива является не увеличение емкости дисковой подсистемы (как видно из его устройства, такую же емкость можно получить и за меньшие деньги), а обеспечение надежности сохранности данных и повышение производительности. Для серверов, кроме того, выдвигается требование бесперебойности в работе, даже в случае отказа одного из накопителей. Бесперебойность в работе обеспечивается при помощи горячей замены, то есть извлечения неисправного SCSI-диска и установки нового без выключения питания. Поскольку при одном неисправном накопителе дисковая подсистема продолжает работать (кроме уровня 0), горячая замена обеспечивает восстановление, прозрачное для пользователей. Однако скорость передачи и скорость доступа при одном неработающем диске заметно снижается из-за того, что контроллер должен восстанавливать данные из избыточной информации. Правда, из этого правила есть исключение - RAID-системы уровней 2, 3, 4 при выходе из строя накопителя с избыточной информацией начинают работать быстрее! Это закономерно, поскольку в таком случае уровень «на лету» меняется на нулевой, который обладает великолепными скоростными характеристиками.

До сих пор речь в этой статье шла об аппаратных решениях. Но существует и программное, предложенное, например, фирмой Microsoft для Windows 2000 Server. Однако в этом случае некоторая начальная экономия полностью нейтрализуется добавочной нагрузкой на центральный процессор, который помимо основной своей работы вынужден распределять данные по дискам и производить расчет контрольных сумм. Такое решение может считаться приемлемым только в случае значительного избытка вычислительной мощности и малой загрузки сервера.


Сергей Пахомов

КомпьютерПресс 3"2002

RAID – аббревиатура, расшифровываемая как Redundant Array of Independent Disks – “отказоустойчивый массив из независимых дисков” (раньше иногда вместо Independent использовалось слово Inexpensive). Концепция структуры, состоящей из нескольких дисков, объединенных в группу, обеспечивающую отказоустойчивость родилась в 1987 году в основополагающей работе Паттерсона, Гибсона и Катца.

Исходные типы RAID-массивов

RAID-0
Если мы считаем, что RAID это “отказоустойчивость”(Redundant…), то RAID-0 это “нулевая отказоустойчивость”, отсутствие ее. Структура RAID-0 это “массив дисков с чередованием”. Блоки данных поочередно записываются на все входящие в массив диски, по порядку. Это повышает быстродействие, в идеале во столько раз, сколько дисков входит в массив, так как запись распараллеливается между несколькими устройствами.
Однако во столько же раз снижается надежность, поскольку данные будут потеряны при выходе из строя любого из входящих в массив дисков.

RAID-1
Это так называемое “зеркало”. Операции записи производятся на два диска параллельно. Надежность такого массива выше, чем у одиночного диска, однако быстродействие повышается незначительно (или не повышается вовсе).

RAID-10
Попытка объединить достоинства двух типов RAID и лишить их присущих им недостатков. Если взять группу RAID-0 с повышенной производительностью, и придать каждому из них (или массиву целиком) “зеркальные” диски для защиты данных от потери в результате выхода из строя, мы получим отказоустойчивый массив с повышенным, в результате использования чередования, быстродействием.
На сегодняшний день “в живой природе” это один из наиболее популярных типов RAID.
Минусы – мы платим за все вышеперечисленные достоинства половиной суммарной емкости входящих в массив дисков.

RAID-2
Остался полностью теоретическим вариантом. Это массив, в котором данные кодируются помехоустойчивым кодом Хэмминга, позволяющим восстанавливать отдельные сбойные фрагменты за счет его избыточности. Кстати различные модификации кода Хэмминга, а также его наследников, используются в процессе считывания данных с магнитных головок жестких дисков и оптических считывателей CD/DVD.

RAID-3 и 4
“Творческое развитие” идеи защиты данных избыточным кодом. Код Хэмминга незаменим в случае “постоянно недостоверного” потока, насыщенного непрерывными слабопредсказуемыми ошибками, такого, например, как зашумленный эфирный канал связи. Однако в случае жестких дисков основная проблема не в ошибках считывания (мы считаем, что данные выдаются жесткими дисками в том виде, в каком мы их записали, если уж он работает), а в выходе из строя целиком диска.
Для таких условий можно скомбинировать схему с чередованием (RAID-0) и для защиты от выхода из строя одного из дисков дополнить записываемую информацию избыточностью, которая позволит восстановить данные при потере какой-то ее части, выделив под это дополнительный диск.
При потере любого из дисков данных мы можем восстановить хранившиеся на нем данные путем несложных математических операций над данными избыточности, в случае выходя из строя диска с данными избыточности мы все равно имеем данные, считываемые с дискового массива типа RAID-0.
Варианты RAID-3 и RAID-4 отличаются тем, что в первом случае чередуются отдельные байты, а во втором – группы байт, “блоки”.
Основным недостатком этих двух схем является крайне низкая скорость записи на массив, поскольку каждая операция записи вызывает обновление “контрольной суммы”, блока избыточности для записанной информации. Очевидно, что, несмотря на структуру с чередованием, производительность массива RAID-3 и RAID-4 ограничена производительностью одного диска, того, на котором лежит “блок избыточности”.

RAID-5
Попытка обойти это ограничение породила следующий тип RAID, в настоящее время он получил, наряду с RAID-10, наибольшее распространение. Если запись на диск “блока избыточности” ограничивает весь массив, давайте его тоже размажем по дискам массива, сделаем для этой информации невыделенный диск, тем самым операции обновления избыточности окажутся распределенными по всем дискам массива. То есть мы также как и в случае RAID-3(4) берем дисков для хранения N информации в количестве N + 1 диск, но в отличие от Type 3 и 4 этот диск также используется для хранения данных вперемешку с данными избыточности, как и остальные N.
Недостатки? А как же без них. Проблема с медленной записью отчасти была решена, но все же не полностью. Запись на массив RAID-5 осуществляется, тем не менее, медленнее, чем на массив RAID-10. Зато RAID-5 более “экономически эффективен”. Для RAID-10 мы платим за отказоустойчивость ровно половиной дисков, а в случае RAID-5 это всего один диск.

Однако скорость записи снижается пропорционально увеличению количества дисков в массиве (в отличие от RAID-0, где она только растет). Это связано с тем, что при записи блока данных массиву нужно заново рассчитать блок избыточности, для чего прочитать остальные “горизонтальные” блоки и пересчитать в соответствии с их даными блок избыточности. То есть на одну операцию записи массив из 8 дисков (7 дисков данных + 1 дополнительный) будет делать 6 операций чтения в кэш (остальные блоки данных со всех дисков, чтобы рассчитать блок избыточности), вычислять из этих блоков блок избыточности, и делать 2 записи (запись блока записываемых данных и перезапись блока избыточности). В современных системах частично острота снимается за счет кэширования, но тем не менее удлиннение группы RAID-5 хотя и вызывает пропорциональное увеличение скорости чтения, но также и соответственное ему снижение скорости записи.
Ситуация со снижением производительности при записи на RAID-5 иногда порождает любопытный экстремизм, например, http://www.baarf.com/ ;)

Тем не менее, поскольку RAID-5 есть наиболее эффективная RAID-структура с точки зрения расхода дисков на “погонный мегабайт” он широко используется там, где снижение скорости записи не является решающим параметром, например для долговременного хранения данных или для данных, преимущественно считываемых.
Отдельно следует упомянуть, что расширение дискового массива RAID-5 добавлением дополнительного диска вызывает полное пересчитывание всего RAID, что может занимать часы, а в отдельных случаях и дни, во время которых производительность массива катастрофически падает.

RAID-6
Дальнейшее развитие идеи RAID-5. Если мы рассчитаем дополнительную избыточность по иному нежели применяемому в RAID-5 закону, то мы сможем сохранить доступ к данным при отказе двух дисков массива.
Платой за это является дополнительный диск под данные второго “блока избыточности”. То есть для хранения данных равных объему N дисков нам нужно будет взять N + 2 диска.Усложняется “математика” вычисления блоков избыточности, что вызывает еще большее снижение скорости записи по сравнению с RAID-5, зато повышается надежность. Причем в ряде случаев она даже превышает уровень надежности RAID-10. Нетрудно увидеть, что RAID-10 тоже выдерживает выход из строя двух дисков в массиве, однако в том случае, если эти диски принадлежат одному “зеркалу” или разным, но при этом не двум зеркальным дискам. А вероятность именно такой ситуации никак нельзя сбрасывать со счета.

Дальнейшее увеличение номеров типов RAID происходит за счет “гибридизации”, так появляются RAID-0+1 ставший уже рассмотренным RAID-10, или всяческие химерические RAID-51 и так далее.
В живой природе к счастью не встречаются, обычно оставаясь “сном разума” (ну, кроме уже описанного выше RAID-10).

Программы и игры