Приставка к прибору для измерений транзисторов. Приставка для проверки транзисторов. Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

Используя схему показанную на рисунке, можно собрать приставку-пробник, при помощи которой можно проверять биполярные транзисторы малой, средней и большой мощности.

При проверке транзисторов к схеме подключают миллиамперметр (1мА), он может быть встроен в схему или быть внешним.

При проверке транзисторов средней и большой мощности отключают миллиамперметр, и уст-во становится пробником со световой индикацией.

Для проверки основных параметров транзисторов малой мощности переключатель П3 устанавливают в соответствующее положение, а приставку соединяют с миллиамперметром (полярность зависит от структуры транзистора). Сначала П1 устанавливают в положение Iкбо, измеряют обратный ток коллекторного перехода, а затем, переведя переключатель в положение h21э — коэффициент передачи тока (при отклонении стрелки на всю шкалу коэффициент передачи тока равен 100).

При проверке транзисторов средней и большой мощности миллиамперметр отключают и нажимают кнопку П2. В этом случае в коллекторную цепь транзистора включается лампочка Л1 (3,5В 0,26А), а в цепь базы последовательно соединенные R1 и R3. Переменным резистором R4 изменяют обратный ток базовой цепи. Если проверяемый транзистор исправный, будет меняться яркость свечения лампы. Чем больше коэффициент передачи тока, тем при большем сопротивлении введенной части резистора R4 возникает заметный на глаз накал нити лампочки.

Если же лампочка не горит, даже при полностью выведенном сопротивлении резистора или горит ярко при лубом положении его движка — транзистор не исправен.

Литература - Бастанов В.Г. 300 практических советов. Москва: Издательство «Московский рабочий», 1992

  • Похожие статьи
  • - Существует достаточно много схем регуляторов мощности на тиристорах или симисторах, где регулировка осуществляется за счет изменения угла отпирания. Регуляторы с такой схемой создают помехи в сети, поэтому применять их можно только с громоздкими LC-фильтрами. В тех случаях, когда не важно, чтобы...
  • - Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако...
  • - Конвертер разработан на основе блока СКД с целью упрощения его схемы, настройки и сборки. Он содержит минимум не дефицитных радиодеталей, неоднократно повторялся на протяжении многих лет и показал отличные результаты. Однако из-за отсутствия УВЧ ему необходим сигнал достаточного...
  • - На рисунке представлена схема простого измерителя электролитических конденсаторов с 2-я диапазонами: 0-200 и 0-1000мкФ и погрешностью измерения не более 10%. Принцип работы измерителя состоит на измерении пульсаций выпрямленного напряжения. Для этого поверяемый конденсатор подключают к...
  • - Стереофонический усилитель предназначен для высококачественного воспроизведения речевых и му­зыкальных программ. Он может работать совместно с электропроигрывателем, магнитофоном, приемни­ком, телевизором. При работе со стереофоническим источником усилитель работает в режиме «стерео», при работе с...

При сборке или ремонте усилителей звука довольно часто требуется подобрать идентичные по параметрам пары биполярных транзисторов . Китайские цифровые тестеры могут измерить коэффициент передачи тока базы (в народе — коэффициент усиления) биполярного транзистора, но маломощного. Для входных дифференциальных или двухтактных каскадов подойдёт. А как быть с мощными выходными?

Для этих целей в измерительной лаборатории радиолюбителя, занимающегося конструированием или ремонтом усилителей, должен быть . Он должен измерять коэффициент усиления на больших токах, близких к рабочим.

Для справки: коэффициент усиления транзистора «по научному» называется коэффициентом передачи тока базы в цепь эмиттера, обозначается h21э . Раньше назывался «бэта» и обозначался как β, поэтому иногда радиолюбители старой школы прибор для проверки транзисторов называют «бетник».

В Интернете и радиолюбительской литературе можно найти огромное количество вариантов схем прибора для проверки транзисторов . Как довольно простых, так и сложных, рассчитанных на разные режимы или автоматизацию процесса измерений.

Для самостоятельной сборки решено было выбрать схему попроще, чтобы наши читатели без труда могли сделать прибор для проверки транзисторов своими руками . Заметим сразу, что нам как-то чаще приходится иметь дело с усилителями на биполярных транзисторах , поэтому и получившийся в конце концов прибор предназначен для измерения параметров только биполярных транзисторов .

Для справки: раньше главный редактор РадиоГазеты измерения проводил старым дедовским способом: два мультиметра (в цепь базы и цепь эмиттера) и «многооборотник» для задания тока. Долго, но информативно – можно не просто подобрать транзисторы, но и снять зависимость h21э от тока коллектора. Довольно быстро пришло осознание бесполезности данного занятия: для наших транзисторов снимать такую зависимость – одно расстройство (настолько они кривые), для импортных – пустая трата времени (все графики есть в даташитах).

Включив паяльник, главный редактор принялся собирать прибор для проверки транзисторов своими руками.

Если ноги плохо пахнут, вспомните, откуда они растут.

Немного погуглив, я нашёл схему прибора для проверки транзисторов , которая растиражирована на довольно приличном количестве сайтов. Простая, портативная... но кроме самого автора её никто не хвалит. Это должно было смутить сразу, но увы.

Итак, исходная схема (с немного упрощенной индикацией и коммутацией):

Увеличение по клику

По замыслу автора здесь операционный усилитель совместно с испытуемым транзистором образуют источник стабильного тока. Ток эмиттера в этой схеме постоянный и определяется величиной эмиттерного резистора. Зная этот ток, нам остаётся только измерить ток базы, а затем путём деления одного на другое получить значение h21э. (в авторском варианте шкала измерительной головки сразу градуировалась в значениях h21э).

Два биполярных транзистора на выходе ОУ служат для увеличения нагрузочной способности микросхемы при измерении на больших токах. Диодный мост включён для того, чтобы исключить необходимость перекоммутации амперметра при переключении с «p-n-p» на «n-p-n» транзисторы. Для повышения точности подбора комплементарных пар биполярных транзисторов требуется отобрать стабилитроны (задающие опорное напряжение) с максимально близкими напряжениями стабилизации.

Меня как-то сразу смутило «не совсем корректное» включение операционного усилителя при однополярном питании. Но макетная плата всё стерпит, поэтому схема была собрана и опробована.

Сразу выявились недостатки. Ток через транзистор сильно зависел от напряжения питания, что ни разу не напоминает генератор стабильного тока . Что там умудрился подбирать автор схемы, питая при этом прибор от аккумулятора, остаётся большой загадкой. По мере разряда аккумулятора «образцовый» ток будет уплывать и довольно заметно. Потом пришлось повозиться в «умощнителем» на выходе ОУ иначе схема неустойчиво работала при измерении транзисторов разной мощности. Потребовалось подобрать значение резистора, а потом я перешёл на более «классический» вариант умощнителя. А двухполярное (правильное) питание ОУ решило проблему с плавающим током.

В итоге схема приобрела вид:

Увеличение по клику

Но тут выявился ещё один недостаток – если вы перепутаете проводимость биполярного транзистора (включите на приборе «p-n-p», а подключите транзистор «n-p-n»), а при подборе из большого количества транзисторов вы точно рано или поздно забудете переключить прибор, то выходит из строя один из транзисторов «умощнителя» и придётся заниматься ремонтом прибора. Да и к чему нам сложности с двухполярным питанием, операционник, умощнитель и прочее?

Всё гениальное просто!

Я задался целью сделать что-то попроще и понадёжнее. Идея с источником тока мне понравилась, проводя измерения на фиксированном (заранее известном) токе эмиттера, мы можем сократить необходимое количество измерительных приборов (амперметров).
Тут я вспомнил про свою любимую микросхему TL431 . Генератор тока на ней строится всего из 4-х деталей: Учитывая не очень большую нагрузочную способность этой микросхемы (а на радиатор её крепить крайне неудобно), для испытания мощных транзисторов при больших токах воспользуемся идеей господина Дарлингтона :

Теперь загвоздка – ни в одном справочнике нет схемы источника тока на TL431 и транзисторе «p-n-p» структуры. Решить эту проблему помогла идея не менее уважаемого мною господина Шиклаи :

Да, пытливый глаз заметит, что через токозадающий резистор здесь протекают токи обоих транзисторов, что вносит некоторую погрешность в измерения. Но, во-первых, при значениях коэффициента передачи тока базы транзистора Т2 выше 20, погрешность составит менее 5% , что для радиолюбительских целей вполне допустимо (мы не Шаттл к Венере запускаем).

Во-вторых, если мы всё же запускаем Шаттл, и нам требуется высокая точность, эту погрешность легко учесть в расчётах. Ток эмиттера транзистора Т1 практически равен току базы транзистора Т2, а его-то мы и будем измерять. В результате, при расчёте h21э (а это очень удобно выполнять в программе Excel) вместо формулы: h21э=Iэ/Iб нужно использовать формулу: h21э=Iэ/Iб-1

Для минимизации данной погрешности, а так же для обеспечения нормальной работы микросхемы TL431 в широком диапазоне токов в качестве транзистора Т1 следует отобрать транзистор с максимальным h21э. Так как это маломощный биполярный транзистор, пока не готов наш прибор, можно воспользоваться китайским мультиметром. Мне удалось всего из 5 штук транзисторов КТ3102 найти экземпляр со значением 250.

Так как сегодня в хозяйстве любого радиолюбителя найдётся китайский мультиметр (а то и не один), его-то мы и будем использовать в качестве измерителя базового тока, что позволит нам не городить коммутацию для разных диапазонов базовых токов (у меня мультиметр с автоматическим выбором предела измерений), а заодно исключить из схемы выпрямительный мост – цифровому мультиметру без разницы направление протекающего тока.

Схема имени меня, Шиклаи и Дарлингтона.

Для объединения вышеприведённых схем в одну добавим немного коммутирующих элементов, источник питания и для большей универсальности расширим диапазон эмиттерных токов. В результате получилась вот такая :

Увеличение по клику

При указанных на схеме номиналах расчетный ток эмиттера обеспечивается уже при +4В питающего напряжения, так что это действительно генератор стабильного тока . Ради эксперимента я пару раз подключал транзисторы не той структуры. Ничего не сгорело! Хотя может быть стоило ток побольше задать? Скажу честно, испытаний на выносливость этого прибора проведено мало, время покажет, но начало мне нравится.

В принципе, питать прибор можно даже от нестабилизированного источника, так как стабилизация тока в схеме осуществляется в очень широком диапазоне питающих напряжений. Но! Бывают транзисторы (особенно отечественные), у которых коэффициент передачи тока базы сильно зависит от напряжения коллектор-эмиттер . Чтобы устранить погрешности измерений из-за нестабильной сети, в схеме предусмотрен стабилизированный источник питания. Кстати, именно из-за таких «кривых» транзисторов следует проводить измерения минимум при трёх разных значения тока.

Итак, схема прибора для проверки транзисторов получилась очень простой, что позволяет без проблем собрать этот прибор самостоятельно, своими руками. Прибор позволяет измерять коэффициент передачи тока базы маломощных и мощных биполярных транзисторов «p-n-p» и «n-p-n» структуры путём измерения тока базы при фиксированном токе эмиттера.

Для маломощных биполярных транзисторов выбраны значения тока эмиттера: 2мА, 5мА, 10мА.
Для мощных биполярных транзисторов измерения проводятся при токах эмиттера: 50мА, 100мА, 500мА.
Ни кто не запрещает проверять транзисторы средней мощности при токах 10мА, 50мА, 100мА. В общем, вариантов масса.
Значения эмиттерных токов можно изменить на своё усмотрение путём пересчёта соответствующего токозадающего резистора по формуле:

R= Uо/Iэ ,

где Uо — опорное напряжение TL431 (2,5В), Iэ — требуемый ток эмиттера испытуемого транзистора.

ВНИМАНИЕ: В природе встречаются микросхемы TL431 с опорным напряжением 1,2В (не помню как отличается маркировка). В этом случае значения всех токозадающих резисторов, указанных на схеме, необходимо пересчитать!

Конструкция и детали.

Из-за простоты устройства печатная плата не разрабатывалась, все элементы распаиваются на выводах переключателей и разъёмов. Всю конструкцию можно собрать в корпусе небольшого размера, всё будет зависеть от габаритов применённого трансформатора и переключателей.

При испытании мощных биполярных транзисторов на больших токах (100мА и 500мА) их необходимо закрепить на радиаторе ! Если пластинчатый радиатор смонтировать на одной из стенок прибора или сам радиатор использовать в качестве стенки прибора, то это сделает пользование устройством более удобным. Радиатор, который всегда с собой! Это существенно ускорит процесс испытания мощных транзисторов в корпусах ТО220, ТО126, ТОР3, ТО247 и аналогичных.

Микросхему стабилизатора блока питания также необходимо установить на небольшой радиатор. Диодный мост подойдёт любой на ток 1А и выше. В качестве трансформатора можно использовать подходящий малогабаритный, мощностью от 10Вт с напряжением вторичной обмотки 10-14В.

Опционально: в приборе для проверки транзисторов предусмотрены гнёзда для подключения второго мультиметра (включенного в режим измерения постоянного напряжения на предел 2-3В). Подсмотрел эту идею на одном из форумов. Это позволяет измерить Uбэ транзистора (при необходимости вычислить крутизну). Данная функция очень удобна при подборе биполярных транзисторов одной структуры для ПАРАЛЛЕЛЬНОГО включения в одном плече выходного каскада усилителя. Если при одном и том же токе напряжения Uэб отличаются не более чем на 60мВ, то такие транзисторы можно включать параллельно БЕЗ эмиттерных токовыравнивающих резисторов. Теперь вы понимаете, почему усилители фирмы Accuphase, где в выходном каскаде в каждом плече включено параллельно до 16 транзисторов, стоят таких денег?

Перечень используемых элементов:

Резисторы:
R3 — 820 Ом, 0,25Вт,
R4 — 1к2, 0,25Вт,
R5 — 510 Ом, 0,25 Вт,
R6 — 260 Ом, 0,25Вт
R7 — 5,1 Ом, 5Вт (лучше больше),
R8 — 26 Ом, 1 Вт,
R9 — 51 Ом, 0,5Вт,
R10 — 1к8, 0,25 Вт.

Конденсаторы:

С1 — 100nF, 63V,
C2 — 1000uF, 35V,
C3 — 470uF, 25V

Коммутация:

S1 — переключатель типа П2К или галетный на три положения с двумя группами контактов на замыкание,
S2 — переключатель типа П2К, тумблер или галетный с одной группой контактов на переключение,
S3 - переключатель типа П2К или галетный на два положения с четырьмя группами контактов на переключение,
S4 — кнопка без фиксации,
S5 — сетевой выключатель

Активные элементы:

T3 — транзистор типа КТ3102 или любой маломощный n-p-n типа с высоким коэффициентом усиления,
D3 — TL431,
VR1 — интегральный стабилизатор 7812 (КР142ЕН8Б),
LED1 — светодиод зелёного цвета,
BR1 — диодный мост на ток 1А.

Tr1 — трансформатор мощностью от 10Вт, с напряжением вторичной обмотки 10-14В,
F1 — предохранитель на 100mA...250mA,
клеммы (подходящие доступные) для подключения измерительных приборов и испытуемого транзистора.

Работа с прибором для проверки транзисторов.

1. Подключаем к прибору мультиметр, включенный в режим измерения тока. Если нет режима «авто», то выбираем предел в соответствии с типом проверяемых транзисторов. Для маломощных - микроамперы, для мощных биполярных транзисторов — миллиамперы. Если вы не уверены в выборе режима, поставьте сначала миллиамперы, если показания будут низкие, переключите прибор на меньший предел.

2. Если есть необходимость подобрать транзисторы с одинаковым Uбэ, подключаем к соответствующим гнёздам прибора второй мультиметр в режиме измерения напряжения на предел 2-3В.

3. Подключаем прибор к сети и нажимаем кнопку «Вкл» (S5).

4. Переключателем S3 выбираем структуру испытуемого транзистора «p-n-p» или «n-p-n», а переключателем S2 его тип — маломощный или мощный. Переключателем S1 устанавливаем минимальное значение эмиттерного тока.

5. Подключаем к соответствующим гнездам выводы испытуемого транзистора. При этом, если транзистор мощный, его следует закрепить на радиаторе.

6. Нажимаем на 2-3 секунды кнопку S4 «Измерение». Считываем показания мультиметра, заносим их в таблицу.

7. Переключателем S1 устанавливаем следующее значение эмиттерного тока и повторяем пункт 6.

8. По окончании измерений отключаем транзистор от прибора, прибор — от сети. В принципе, парные транзисторы можно отобрать по близким значениям измеренного базового тока. Если требуется рассчитать коэффициент h21э или построить графики, то следует перенести данные в электронную таблицу Excel или аналогичную.

9. Сравниваем полученные данные в таблице и отбираем транзисторы с близкими значениями.

Вместо эпилога.

Немного замечаний по маломощным биполярным транзисторам (не зря же я для них режимы предусмотрел?).
Почему-то радиолюбители наибольшее внимание при построении усилителей на транзисторах уделяют (и то в лучшем случае) подбору идентичных экземпляров для оконечного каскада.

Между тем, на входе усилителя чаще всего используют дифференциальные каскады или реже двухтактные . При этом напрочь забывается, что для получения от диф. каскада как и от двухтактного по максимуму всех его замечательных свойств транзисторы в таком каскаде также должны быть подобраны !

Более того, для обеспечения максимально близкого температурного режима корпуса транзисторов дифкаскада лучше склеить между собой (или прижать друг к другу хомутиком), а не разносить по разным сторонам платы. Применение во входном каскаде интегральных транзисторных сборок устраняет эти проблемы, но такие сборки порой стоят дорого или просто не доступны радиолюбителям.

Поэтому подбор маломощных транзисторов входного каскада остаётся актуальной задачей, и предлагаемый прибор для проверки транзисторов может существенно облегчить этот процесс. Тем более, что один из выбранных для измерения режимов - ток 5мА, чаще всего и является током покоя первого каскада. А на каком токе проводит измерения китайский мультиметр???

Удачного творчества!

Главный редактор «РадиоГазеты».

Для транзисторов структуры п-р-п полярность включения питающей батареи GB и измерительного прибора РА должна быть обратной.

Обратный ток коллектора Iкбо измеряют при заданном обратном напряжении на коллекторном р-п переходе и отключенном эмиттере (рис. 57, а). Чем он меньше, тем выше качество коллекторного перехода и стабильность работы транзистора.

Параметр h21э, характеризующий усилительные свойства транзистора, определяют как отношение тока коллектора Iк к вызвавшему его току базы IБ, (рис. 57, б), т. е. h2lэ ~ Iк/Iв. Чем больше численное значение этого параметра, тем больше усиление сигнала, которое может обеспечить транзистор.

Для измерения этих двух основных параметров маломощных биполярных транзисторов можно рекомендовать сделать в кружке приставку к самодельному авометру, описанному выше. Схема такой приставки показана на рис. 58, а. Проверяемый транзистор V подключают выводами электродов к соответствующим зажимам «Э», «Б» и «К» приставки, соединенной (через зажимы XI, Х2 и проводники с однополюсными штепселями на концах) с миллиамперметром авометра, включенного на предел измерения «1 мА». Переключатель S2 предварительно устанавливают в положение, соответствующее структуре проверяемого транзистора. При проверке транзистора структуры п-р-п с гнездом «Общ.» авометра соединяют зажим XI приставки (как на рис. 58, а), а при проверке транзистора структуры р-п-р — зажим Х2.

Установив переключатель S1 в положение «I КБО», измеряют сначала обратный ток коллекторного перехода, а затем, переведя переключатель S1 в положение «h21э», — статический коэффициент передачи тока. Отклонение стрелки прибора на всю шкалу при измерении параметра I КБ0 укажет на пробой коллекторного перехода проверяемого транзистора.

Измерение параметра h21э происходит при фиксированном токе базы, ограничиваемым резистором R1 до 10 мкА. При этом транзистор открывается и в его коллекторной цепи (в том числе через миллиамперметр) течет ток, пропорциональный коэффициенту h21э. Если, например, прибор фиксирует ток 0,5 мА (500 мкА), то коэффициент h21э проверяемого транзистора будет 50 (500: 10 = 50). Ток 1 мА (отклонение стрелки прибора до конечной отметки шкалы), следовательно, соответствует коэффициенту h21э равному 100. Если стрелка прибора зашкаливает, миллиамперметр авометра надо переключить на следующий предел измерения тока — «10 мА». В этом случае вся шкала прибора будет соответствовать коэффициенту h21э, равному 1000, а каждая десятая часть ее — 100.

Резистор R2, ограничивающий ток в измерительной цепи до 3 мА, нужен для предупреждения порчи измерительного прибора из-за пробоя проверяемого транзистора.
Возможная конструкция приставки показана на рис. 58, б. Для лицевой панели, размерами примерно 130X75 мм, желательно использовать листовой гетинакс или текстолит толщиной 1,5—2 мм.

Зажимы «Э», «Б» и «К> для подключения выводов транзистора типа «крокодил». Переключатель вида измерений S1 — тумблер ТП2-1, структуры транзистора S2 — ТП1-2. Батарею питания GB1 — 3336Л или составленную из трех элементов 332, крепят на панели снизу, там же монтируют и ограничительные резисторы R1 и R2. Зажимы (или гнезда) для соединения приставки с авометром размещают в любом удобном месте, например на задней боковой стенке ящика. Сверху на панель наклеивают краткую инструкцию по работе с приставкой-измерителем. Проверить работоспособность и оценить усилительные свойства транзисторов средней и большой мощности можно с помощью простого прибора, схема которого приведена на рис. 59. Проверяемый транзистор V подключают к зажимам, соответствующим его электродам. При этом в коллекторную цепь транзистора оказывается включенным амперметр РА1 на ток полного отклонения стрелки 1A, а в базовую — один из резисторов R1—R4. Сопротивления резисторов подбирают с таким расчетом, чтобы ток базовой цепи транзистора можно было устанавливать равным 3, 10, 30 и 50 мА. Таким образом, проверка транзистора осуществляется при фиксированных токах в базовой цепи, устанавливаемых переключателем S1. Источником питания служат три элемента 373, соединенные последовательно, или низковольтный выпрямитель, обеспечивающий напряжение 4,5 В при токе нагрузки до 2А.

Численное значение статического коэффициента передачи тока проверяемого транзистора определяют как отношение тока коллектора к вызвавшему его току базы. Например, если переключатель S1 установлен на ток базы, равный 10 мА, а амперметр PA 1 фиксирует ток 500 мА, значит, коэффициент h21э данного транзистора равен 50 (500: 10 = 50).

Конструкция такого прибора — испытателя транзисторов произвольная. Ее можно сделать как приставку к авометру, амперметр которого рассчитан на измерение постоянных токов до нескольких ампер.

Производить проверку транзистора надо возможно быстрее, потому что уже при токе коллектора 250...300 мА он начинает нагреваться и тем самым вносить погрешности в результаты измерений.

Сайт находится в тестовом режиме. Приносим извинения за сбои и неточности.
Просим Вас писать нам о неточностях и проблемах через форму обратной связи.

Приставка для проверки транзисторов

В. Календо. Приставка для проверки транзисторов. Известная по публикациям в журнале идея применения диодных мостов в измерительной технике позволила автору статьи разработать простую приставку — своеобразный коммутационный узел для контроля параметров биполярных и полевых транзисторов практически всех типов. Приставка позволяет измерять статический коэффициент передачи тока биполярных транзисторов при фиксированных значениях тока базы (10, 30, 100, 300мкА; 1, 3, 10, 30мА), начальный ток стока полевых транзисторов с p-n переходом или встроенным каналом; ток стока полевых транзисторов с индуцированным каналом при напряжении на затворе, равном половине напряжения сток—исток; крутизну характеристики полевых транзисторов с двумя затворами по каждому из них; крутизну характеристики полевых транзисторов при использовании вывода подложки (корпус-подложка) в качестве второго затвора. Прибор выполнен на транзисторе КП302БМ и 10 диодах (4 х КД522А и 6 х КД212А).

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET , так и J-FET ). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов - эквивалентное последовательное сопротивление (ЭПС или ESR ).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR - MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс . Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. вариант без корпуса, а с корпусом.

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 - прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и "рассыпуха" - планарные конденсаторы и резисторы.

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания .

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Итак, каковы же возможности данного тестера?

Замер ёмкости и параметров электролитического конденсатора.

Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме . Это поможет понять, что же вам показывает прибор.

Проверка биполярных транзисторов.

В качестве подопытного "кролика" возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э ) и напряжение смещения Б-Э (открытия транзистора) Uf . Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний - диод 1N4007.

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf . В техдокументации на диоды указывается как V F - Forward Voltage (иногда V FM ). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007 : V F =677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C =8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT .

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как V F ), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка резисторов.

Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).

Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей . И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току - 1 Ом (1,0Ω).

Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8 .

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part" , что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".

Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Покажу на примере. Вот внутреннее устройство оптопары TLP627.

Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.

Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.

Теперь расскажу о том, какие детали этим тестером НЕ проверить.

    Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;

    Стабилитроны . Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
    При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;

    Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;

    Динисторы . Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;

    Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;

    Варисторы определяет как конденсаторы;

    Однонаправленные супрессоры определяет как диоды.

Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.

Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.

Интернет на Андроиде