Трехполосные фильтры для а с 8 ом. Трёхполосная АС с фазоинвертором. При этом эквивалентное сопротивление Z составит


Автор уже много лет профессионально занимается конструированием и производством эксклюзивных акустических систем. В этой статье он рассказывает о конструкции трёхполосного стереокомплекта АС, где установлены высококачественные динамические головки известных зарубежных производителей. В кроссовере применены также высококачественные компоненты, улучшающие верность воспроизведения музыкальных записей различных жанров.

Эта акустическая система была одним из экспонатов выставки "Российский Hi-End 2015", где вызвала интерес многих посетителей и заслужила высокие оценки специалистов и любителей при демонстрационных прослушиваниях.

Проект этой акустической системы (АС) был начат давно, но доделать первую пару удалось только к 15-й выставке "Российский Hi-End" в ноябре 2015 г. Недавно была сделана вторая пара с небольшими изменениями: упрощён корпус и немного изменён кроссовер по результатам прослушивания и измерений.

В АС применены динамические головки: высокочастотная Morel ET338-104 , среднечастотная Scan-Speak 15M/ 4531K00 и низкочастотная SEAS H1215 .

ВЧ-головка израильской фирмы с мягким куполом отличается очень мощной магнитной системой и малыми нелинейными искажениями. Несмотря на наличие магнитной жидкости в зазоре, она обладает динамичным звучанием и хорошо передаёт звучание медных и ударных инструментов.

СЧ-головка диаметром 15 см датской фирмы Scan-Speak в серии Reve-lator стала одной из лучших среди СЧ-головок всех производителей. Её подвижная система отличается большим линейным ходом (именно для СЧ-головки) и допускает относительно низкую частоту разделения. Нелинейные искажения в рабочей полосе частот очень малы: магнитная система имеет два линеаризующих медных кольца. Бумажный диффузор имеет специальные надрезы, обеспечивающие более ровную АЧХ в конце поршневого режима.

НЧ-головки диаметром 18см (6,5 дюйма) норвежской фирмы SEAS - обычные с бумажным диффузором, пропитанным с наружной стороны. Пропитка обеспечивает ровный спад АЧХ выше рабочей полосы частот. В каждой АС установлены две таких головки в общем объёме. Акустическое оформление - с фазоинвертором (ФИ).

Две головки размером 6,5 дюйма имеют площадь диффузора немного больше, чем одна восьмидюймовая головка. Также у H1215 область поршневого режима простирается до частоты 800 Гц, а у головки размером 8 дюймов той же фирмы поршневой режим заканчивается на частотах выше 600 Гц. У H1215 параметр ускорения Bl/M ms = 496, а у восьмидюймовой головки он обычно не превышает 350.

Требуемый объём для НЧ-головок и частоту настройки ФИ можно оценить в программе на Exel (freeware) Unibox (автор - датчанин Kristian Kougaard), заложив в неё параметры головок из перечня характеристик (datasheet). Эта простая и удобная программа позволяет учесть многие параметры головок, различные конфигурации и рассчитать различные оформления. При расчётах нужно учитывать предположительное активное сопротивление катушки фильтра НЧ-звена.

Для двух H1215, соединённых параллельно, расчёты показывают оптимальный объём примерно 32 л, а при диаметре трубы фазоинвертора 66 и длине 116 мм частота настройки ФИ - около 43 Гц. Эти размеры соответствуют размерам готового фазоинвертора AH-4 китайского производства. Впоследствии труба ФИ была обрезана до длины 100 мм. Реальная частота настройки стала около 44 Гц.

В прототипе АС НЧ-головки были установлены каждая в свой отсек, что дало возможность корректно провести измерения.

Чертежи корпуса и его деталей (рамка для ткани - гриль) показаны на рис. 1 и 2.

Рис. 1. Чертежи корпуса и его деталей

Рис. 2. Чертежи корпуса и его деталей

Корпус выполнен из материала MDF (иногда применяют транслит МДФ - мелкодисперсионная фракция из древесины). Передняя панель и основание имеют толщину 25 мм, остальные панели - 16 и 20 мм. Корпус отделан шпоном и крепится к съёмному основанию, покрашенному в чёрный цвет. АС рекомендуется устанавливать на шипы, для чего в основании предусмотрены стальные втулки с резьбой.

Когда акустическая система проектируется с нуля, могут понадобиться макетные корпуса для отработки конструкции, но в этом случае (к выставке) было решено заказать сразу чистовой корпус в шпоне.

Наклонная перегородка между отсеками СЧ и НЧ в Ас сделана для частичного подавления вертикальной стоячей волны в корпусе и для уменьшения объёма отсека СЧ. При горизонтальной перегородке этот отсек получался слишком большим, а для получения необходимого объёма отсека нЧ приходилось увеличивать общую высоту АС, которая и так была больше метра (1052 мм без шипов). Отсек СЧ заполнен синтепоном более чем на 50 %, но пространство около СЧ-головки свободно от синтепона.

Для акустических измерений необходим измерительный комплекс. В простейшем виде - это микрофон, звуковая карта компьютера и компьютерная программа для электроакустических расчётов. Я пользуюсь измерительным комплексом LMS американской фирмы LINEARX. Он не выпускается в настоящее время, но очень удобен для измерений и позволяет измерять АЧХ в неподготовленном помещении. Комплекс включает в себя микрофон, плату для компьютера и программное обеспечение.

Существуют и другие средства измерений, например, Clio итальянской фирмы Audiomatica SRL или MLSSA Однако для любительских измерений подобные системы очень дороги.

Более простым средством является программа LoudSpeaker LAB 3 шведского автора, но она не бесплатная. Программа позволяет использовать звуковую карту компьютера с подходящим для этих целей микрофоном.

Законченным и относительно недорогим решением является ATB PC PRO немецкой фирмы Kirchner. Несмотря на немного примитивную реализацию эта компьютерная программа позволяет проводить измерения, достаточные для изготовления качественных АС.

На рис. 3 показаны АЧХ динамических головок, измеренные по звуковому давлению, а на рис. 4 - характеристики их импеданса. АЧХ измерены с расстояния 0,5 м по оси излучения соответствующих головок. Пунктирная линия - для ВЧ-головки, штрихпунк-тирная - для СЧ-головки, сплошная - для НЧ-головки.

Рис. 3. АЧХ динамических головок, измеренные по звуковому давлению

Рис. 4. Характеристики импеданса динамических головок

АЧХ по звуковому давлению сглажены для удобства применения. Система не тарирована для измерения абсолютного значения звукового давления, поэтому графики не соответствуют заявленной чувствительности головок. Уровень сигнала выбирается исходя из удобства измерений так, чтобы не мешали шумы системы и не было больших искажений.

После измерений графики экспортируются в программу-симулятор, которая позволяет смоделировать АЧХ и другие параметры системы с учётом фильтра. Программа также позволяет рассчитать элементы фильтров кроссовера и оптимизировать АЧХ. Я пользуюсь программой LspCAD 5.25 автора Ingemar Johansson. Она является достаточно мощной, но не очень сложной в освоении. Существует более поздняя версия, но она недостаточно удобна.

Есть ещё очень мощная программа LEAP того же LINEARX, что производил LMS. Она более совершенна, но тяжела в использовании.

Готовый результат моделирования представлен на рис. 5. Верхний график - суммарная АЧХ на оси ВЧ-головки в бесконечности (толстая линия) и АЧХ головок со своими фильтрами (тонкие линии). АЧХ нельзя назвать ровной, но это не критично, так как симулятор показывает более ровную АЧХ на оси на 5 град. выше оси ВЧ-головки. Нижний график - характеристика импеданса АС и головок с соответствующими фильтрами.

Рис. 5. Результат моделирования

Схема фильтров кроссовера для одного канала АС показана на рис. 6.

Рис. 6. Схема фильтров кроссовера для одного канала АС

В кроссовере на НЧ использован фильтр первого порядка (катушка индуктивности L4). Полоса СЧ также обрезана сверху и снизу фильтром первого порядка (C2 и L2). Для полосы ВЧ применён фильтр второго порядка (dL1).

Акустический и электрический порядки спада фильтров обычно не совпадают, так как в полосе задержания фильтра АЧХ головок имеют собственные неравномерности. Поэтому реальные спады вблизи частот разделения в полосах НЧ и близки к первому, в полосах СЧ сверху и ВЧ - ближе к третьему из-за собственных спадов АЧХ головок, которые добавляются к спаду, обеспечиваемому электрическим фильтром.

В АС все головки подключены син-фазно. Обычно басовые головки не удаётся свести фильтром первого порядка и без переполюсовки - чаще применяется второй порядок. Здесь это удалось ценой большей неравномерности суммарной АЧХ. Низкий порядок фильтров означает более широкие области совместной работы головок и лепестковые диаграммы направленности в вертикальной плоскости с узкими центральными лепестками. Но АС с фильтрами низких порядков звучит более естественно, слитно и живо.

Цепь R6C5 совместно с катушкой L4 образуют фильтр-пробку, вырезающий небольшой выброс на АЧХ басовых головок, который слышен, если не принять специальных мер. Одновременно эта цепь немного уменьшает наклон АЧХ выше частоты разделения, поэтому, чтобы скомпенсировать это уменьшение наклона, введена цепь R7C6.

Контур L5C7 (как режектор) устраняет подъём в импедансе басового звена на частотах около 75 Гц. Это нужно для устранения пика на АЧХ громкоговорителя, который маскирует нижний бас. Это явление называется "накачкой", термин предложен С. Д. Батем. Большинство производителей АС не учитывают это явление, хотя существуют проекты АС, где применяется подобная цепь, выравнивающая импеданс.

В кроссовере применены полипропиленовые конденсаторы, причём С1 и С2 - Mundorf Supreme (дорогие, чёрного цвета - см. фото далее). Цена конденсаторов С2, СЗ (сборки из четырёх штук) соизмерима с ценой СЧ-головки, но в хорошем тракте разница в звучании АС с такими конденсаторами заметна. Для экономии его можно заменить другим - Mundorf МСар (белого цвета). Можно использовать частично Supreme, а частично MCap (как С4). Конденсатор С7 - неполярный оксидный (Mundorf Bipolar).

Катушки - обычные из обмоточного провода, кроме L2 (Mundorf CFC16), которая намотана ленточным обмоточным (JBSPL проводом. Диаметры провода для катушек L1 и L3 (Mundorf L100) - 1 мм, для L4 (Mundorf L140) - 1,4 мм, для L5 (Mundorf L71) - 0,71 мм (сопротивление около 4,5 Ом). Катушка L5 может быть на ферромагнитном сердечнике, и её сопротивление может отличаться, в этом случае сумма сопротивления катушки L5 и дополнительного резистора (на схеме не показан) должна быть приблизительно равна 4,5 Ом. Резисторы в кроссовере - металлооксидные (Mundorf MResist MOX).

На фото рис. 7 кроссовер показан в сборе. Детали монтируют на выводах навесным монтажом и крепят термоклеем к панели из МДФ, фанеры или другого материала толщиной 3...6 мм. Фильтры собраны на двух панелях: вместе для СЧ-ВЧ и отдельно - для НЧ. Панель фильтра НЧ крепится к боковой стенке АС в отсеке нижней НЧ-головки, а панель фильтров для СЧ и ВЧ головок - к боковой стенке в отсеке верхней НЧ-головки. Отверстия, через которые проходят провода от фильтров к СЧ- и ВЧ-головкам, должны быть загерметизированы пластилином.

Рис. 7. Кроссовер в сборе

Посмотрим, какие реальные импеданс и АЧХ обеспечивает данный кроссовер.

На рис. 8 показана АЧХ АС в комнате, снятая с расстояния 1 м по оси ВЧ-головки. Видно, что она похожа на продукт моделирования (см. рис. 4), но оказалась более ровной, чем предсказывал симулятор. Такое часто бывает из-за того, что динамические головки по умолчанию при моделировании и измерениях считаются минимальнофазовыми, а в реальности, за пределами поршневого режима, это может не выполняться.

Рис. 8. АЧХ АС

Поэтому сразу смоделировать "правильный" фильтр не получится. Требуются изменения в фильтрах и дополнительные измерения и прослушивания.

Реально АЧХ (сглаженная в треть октавы) укладывается в отклонение ±3 дБ, если не обращать внимания на АЧХ ниже 300 Гц, где заметно влияет помещение.

В частности, из-за интерференции прямого от АС и отражённого от пола сигналов у микрофона фиксируется спад АЧХ в области около 200 Гц. При удалении от АС этот эффект нивелируется. Локальные максимумы на частотах 34 и 60 Гц обусловлены стоячими волнами, которые воспринимает микрофон в данной точке (на 34 Гц - между стенами, на 60 Гц - между полом и потолком). Максимум в области 140 Гц возник из-за отражения от близко стоящей мебели.

Учитывая незначительное сглаживание характеристики, результат - вполне достойный.

На рис. 9 показана частотная характеристика импеданса АС. Она практически совпадает с рассчитанной при моделировании. Небольшой пик на 180 Гц - неподавленная вертикальная стоячая волна в отсеке НЧ. Метки на 100 Гц и 1 кГц генерируются программно, в реальности их нет.

Рис. 9. Частотная характеристика импеданса АС

Видно, что импеданс в рабочей области частот не падает ниже 3,3 Ом и не превосходит 7,2 Ом (кроме низкочастотного горба фазоинвертора). Систему можно считать номинально четырёхомной, и она может использоваться с ламповым усилителем, так как имеет довольно ровный импеданс и достаточно высокую чувствительность.

Технические характеристики АС

Номинальное сопротивление, Ом........................ 4

Чувствительность при 2,83 В, дБ...........................88

Полоса воспроизводимых частот при неравномерности ±3 дБ, Гц.........40...20000

На фото рис. 10 показан первый стереокомплект АС (корпуса по краям стенда), изготовленный и представленный на выставке "Российский Hi-End" в 2015 г. По мнению многих посетителей, при средней стоимости комплектующих и изготовления качество отделки корпусов достаточно высокое, а звучание АС оценено как сбалансированное и естественное на многих музыкальных жанрах, хотя, нужно признать, фонограммами "тяжёлого металла" или "рока" автор там не располагал...

Рис. 10. Стереокомплект АС

Литература

1. Morel ET338-104. - URL: http://www. morelhifi.com/product/et-338-104/(21.04.16).

2. Scan-Speak 15M/4531K00. - URL: http:// www.scan-speak.d k/datasheet/pdf/ 15m-4531k00.pdf (21.04.16).

3. SEAS H1215 CA18RNX. - URL: http:// www.seas.no/index. php?option=com_conte nt&view = article&id = 340:h1215-08-ca18rnx&catid=44&Itemid=461 (21.04.16).


Дата публикации: 14.08.2016

Мнения читателей
  • Георгий Крылов / 14.06.2017 - 12:17
    Там в схеме опечатка. R6 должно быть не 2.2 ома, а 22 ома.
  • Георгий Крылов / 30.03.2017 - 00:23
    Там в схеме фильтра опечатка. R6 не 2.2Ом, а 22. Владимиру: катушка L3 намотана проводом 1мм. Все катушки Мундорф. Суммарное сопротивление R5L3 около трех Ом. Из-за того, что в "Радио" перерисовали схему по несуществующему ГОСТу несуществующей страны, там появилась ошибка и исчезли мои примечания по типу и характеристикам элементов.
  • Георгий Крылов / 08.10.2016 - 03:06
    L3 - Мундорф L100 - сопротивлени где-то 0.2-.3 ома. Важнее сопротивлене катушки L5, ее сопротивление 4.5 ома. У меня в материалах статьи была схема с данными элементов, но редакция перерисовывает схему по ГОСТУу экс-СССР, и заставить ее сохранить мою схеиу я не мог. Правда, в тексте есть названия и параметры элементов.
  • Владимир / 19.08.2016 - 12:26
    Автор хорошо описал НЧ звено фильтра. ВЧ звено описаний не требует. А вот конструкция СЧ звена порождает некоторые вопросы. Цепочка R5C4L3, видимо, используется для подавления горба 4,5 – 5 кГц на АЧХ СЧ головки? Ведь частота резонанса последовательного колебательного контура C4L3, согласно моим подсчетам, примерно 4,5 кГц. Резистор R5 изменяет добротность контура, регулируя глубину режекции. А вот какое суммарное сопротивление R5L3 ? Это важно при изготовлении катушки. И не лучше ли при расчете катушки указать необходимый номинал ее сопротивления и изготовить катушку уже нужной добротности?

Ирина Алдошина

Дата первой публикации:

фев 2009

Разделительные фильтры в акустических системах.

Практически все современные высококачественные акустические системы являются многополосными, то есть состоящими из нескольких громкоговорителей, каждый из которых работает в своем диапазоне частот. Это обусловлено тем, что практически невозможно создать динамический громкоговоритель, который обеспечивал бы излучение в широком диапазоне частот с малым уровнем искажений (в первую очередь, интермодуляционных, а также переходных, нелинейных и др.) и широкой характеристикой направленности. Поэтому в акустических системах (как профессиональных, так и бытовых) используют несколько громкоговорителей (низкочастотные, среднечастотные, высокочастотные, иногда супервысокочастотные), а для распределения энергии звукового сигнала между ними включают электрические разделительные фильтры.

Влияние разделительных фильтров на формирование характеристик акустических систем в предыдущие годы недооценивалось: им отводилась лишь роль ослабления сигнала за пределами рабочей полосы частот громкоговорителей. Однако развитие техники акустических систем категории Hi-Fi заставило пересмотреть взгляд на роль разделительных фильтров в акустических системах и на методику их проектирования. Многочисленные теоретические и экспериментальные работы, посвященные влиянию разделительных фильтров на коррекцию характеристик излучателей и формирование объективных и субъективных характеристик акустических систем, заставили считать разделительные фильтры одним из важнейших компонентов акустических систем, с помощью которого можно синтезировать многие необходимые электроакустические характеристики и добиться значительного прогресса в обеспечении естественности звучания.

Прежде чем переходить к анализу различных типов фильтров, применяемых в акустических системах, и методам их расчета, остановимся на определении основных параметров фильтров.

Параметры фильтров
Фильтром называется устройство, пропускающее определенные спектральные составляющие в сигнале и не пропускающее (ослабляющее) остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры).

В современных акустических системах применяются как пассивные, так и активные фильтры (кроссоверы). Первые включаются после общего усилителя в каждом канале, вторые включаются до усилителя. Общая схема включения показана на рис.1. Активные фильтры имеют ряд преимуществ перед пассивными фильтрами, поскольку их значительно легче перестраивать, можно реализовать различными способами, в них отсутствуют потери мощности и т. д. Однако активные фильтры проигрывают пассивным по таким параметрам, как динамический диапазон, нелинейные искажения, уровень шумов и др. Методы проектирования активных фильтров широко освещены в специальной литературе, поэтому здесь остановимся только на методах проектирования пассивных фильтров, которые широко используются в современных акустических системах.

Основными параметрами, определяющими свойства фильтров, являются:
- полоса пропускания - область частот, в которой фильтры пропускают сигнал;
- полоса задерживания - область частот, где фильтры существенно подавляют сигнал;
- частота среза f ср - частота, на которой сигнал ослабляется на 3 дБ по отношению к среднему уровню в полосе пропускания.

По характеру расположения полосы пропускания и полосы задерживания фильтры разделяются на четыре основных типа.

Фильтры нижних частот (ФНЧ) пропускают низкочастотные составляющие в спектре сигнала (от нуля до частоты среза) и подавляют высокочастотные. Используются для низкочастотных громкоговорителей. Форма частотной характеристики показана на рис. 2.

Фильтры высоких частот (ФВЧ) пропускают высокочастотные составляющие (от частоты среза и выше) и подавляют низкочастотные. Применяются для высокочастотных громкоговорителей. Форма АЧХ показана на рис. 2.

Полосовые фильтры (ПФ) пропускают определенные полосы частот (от f ср1 до f ср2 ) и подавляют нижние и верхние частоты. Применяются для среднечастотных громкоговорителей, рис. 2.

Существуют также режекторные фильтры, которые представляют собой комбинацию низкочастотного и высокочастотного фильтров. Они подавляют спектральные составляющие сигнала в определенной полосе частот и пропускают в других полосах. Применяются иногда в акустических системах для вырезания отдельных пиков и провалов на АЧХ.

Кроме того, каждый из перечисленных фильтров характеризуется следующими параметрами: крутизной спада АЧХ при переходе от полосы пропускания к полосе задерживания, неравномерностью в полосе пропускания и задерживания, резонансной частотой и добротностью (Q). В зависимости от структуры фильтра и количества элементов в нем может быть обеспечена разная крутизна спада АЧХ. Обычно в акустических системах используются фильтры с крутизной спада 12 дБ/окт, 18 дБ/окт и 24 дБ/окт (рис. 3), которые, соответственно, называются фильтрами второго, третьего и четвертого порядков.

Простейшая структура LC-фильтра низких частот второго порядка показана на рис. 4. Она включает в себя следующие элементы: индуктивность L, реактивное сопротивление которой прямо пропорционально частоте (XL = 2πfL), и емкость C, реактивное сопротивление которой обратно пропорционально частоте (ХС = 1/2πfC). Поэтому представленная на рис. 4а цепь пропускает низкие частоты (поскольку сопротивление индуктивности L мало на низких частотах) и обеспечивает затухание высоких частот. Фильтр высоких частот имеет обратную структуру (рис. 4б) и, соответственно, пропускает высокие частоты и задерживает низкие.

Вид АЧХ фильтров высоких частот второго порядка при разных значениях добротности показан на рис. 5. Резонансная частота такого фильтра определяется как f=1/(LC)1/2 , а добротность как Q = [(R2 C)/L]1/2 .

Из рис. 5 видно, что изменения значения добротности меняет характер спада АЧХ от гладкого (при Q = 0.707) до спада с подъемом на частоте резонанса (Q = 1).

По имени ученых, которые математически описали передаточные функции фильтров (то есть их формы частотных характеристик), они получили разное название: фильтры с добротностью Q = 1 называются фильтрами Чебышева, Q = 0.707 - Баттерворта, Q = 0.58 - Бесселя, Q = 0.49 - Линквица-Риле. Каждый из указанных типов фильтров имеет свои преимущества и недостатки.

Передаточная функция

Под передаточной функцией фильтра понимается отношение комплексной амплитуды напряжения на выходе фильтра к комплексной амплитуде напряжения на входе. Обычно передаточные функции физически реализуемых и устойчивых линейных цепей описываются в виде математических формул, знаменатели которых являются выражениями следующего вида (полиномами): Gn(s) = an sn +a n-1 sn-1 +…….+a1 s+1. Порядок фильтра определяется степенью n от комплексной частоты s, которая связана с обычной круговой частотой как s = jω. (величина j называется мнимой единицей ). Выбор вида коэффициентов аn определяет принадлежность фильтров к типу Баттерворта, Чебышева и др. Например, полиномы Баттерворта разных порядков имеют вид В1 (s) = (1+s); B2 (s) = (1+1,414s+s2 ) и т. д.

В акустических системах проблема выбора фильтров усложняется тем, что необходимо выбрать три или два (в зависимости от количества полос) типа фильтров одинаковых или разных порядков, которые совместно с громкоговорителями обеспечивали бы суммарные характеристики акустической системы (такие как амплитудно-частотная характеристика - АЧХ, фазочастотная характеристика - ФЧХ, групповое время задерживания - ГВЗ, и др.) с требуемыми параметрами внутри эффективно-воспроизводимого диапазона частот.

История создания фильтров
История создания разделительных фильтров начинается одновременно с появлением многополосных акустических систем. Одну из первых теорий разработали в 30-е годы инженеры G. A. Campbell и О. J. Zobel из фирмы Bell Labs (США). Первые публикации относятся к этому же периоду, их авторы K. Hilliard и H. Kimball работали в звуковом отделе фирмы Metro Goldwin Meyer. В 1936 году в мартовском номере Academy Research Council Technical Bulletin была опубликована их статья "Разделительные фильтры для громкоговорителей". В январе 1941 года K. Hilliard в журнале Electronics Magazine также опубликовал работу "Разделительные фильтры громкоговорителей", содержавшую все необходимые формулы для создания цепей Баттерворта первого и третьего порядков (как для параллельных, так и для последовательных схем). К 50-м годам фильтры Баттерворта были признаны предпочтительными для разделительных целей акустических систем. Тогда же в 60-х J. R. Ashley и R. Small впервые описали свойства "всепропускающих" фильтрующих схем, а также линейно-фазовых цепей.

Выяснению количественного соотношения затухания, вносимого фильтрами вне полосы пропускания, и величины интермодуляционных искажений вследствие перекрывания полос акустических систем, была посвящена статья "Фильтрующие цепи и модуляционные искажения" (автор R. Small), опубликованная в JAES в 1971 году. В ней было показано, что минимальная величина затухания должна быть 12 дБ/окт, чтобы предотвратить искажения в полосе перекрытия. Тогда же Ashley и L. М. Неnnе исследовали "всепропускающие" и "фазокогерентные" свойства фильтров Баттерворта третьего порядка. В 1976 году S. Linkwitz исследовал полярную диаграмму направленности для двухполосных систем с разнесенными излучателями и убедился, что акустические системы с разделительными фильтрами Линквитца-Риле обеспечивают ее симметричность.

Чуть позднее P. Garde дал полное описание всепропускающих фильтров и их разновидностей. Используя его идеи, D. Fink в соавторстве с Е. Long развил метод коррекции горизонтального (то есть глубинного) смещения головок громкоговорителей в акустических системах путем введения линий задержки в фильтр. Существенный вклад в теорию фильтрации внесли W. Marshall-Leach и R. Bullock, которые впервые ввели понятие оптимизации фильтров по типу и порядку с учетом смещения головок по двум осям. В продолжение этих работ R. Bullock описал свойства трехполосных симметричных фильтров и доказал, что трехполосная система фильтров не может быть получена как простая комбинация двухполосных, вопреки бытовавшему мнению. S. Lipshitz и J. Vanderkooy в серии статей рассмотрели различные варианты построения фильтров с минимально фазовыми характеристиками.

Новый этап в исследовании и проектировании многополосных акустических систем с разделительными фильтрами наступил с началом активной компьютеризации расчетов на основе программ ХОРТ, CACD, CALSOB, Filter Designer, LEAP 4.0 и др.

До недавнего времени конструирование разделительных фильтров в акустических системах шло практически методом "проб и ошибок". Это объясняется тем, что все теоретические работы прошлых лет, посвященные расчету разделительных фильтров в акустических системах, исходили из условия идеальности самих громкоговорителей. При анализе свойств разделительных фильтров того или иного типа и рассмотрении их влияния на характеристики акустических систем пренебрегали направленными свойствами громкоговорителей и условиями их физического размещения в корпусе акустической системы. Считали, что громкоговорители обладают плоской АЧХ, не вносят фазовых сдвигов в воспроизводимый сигнал и имеют активное входное сопротивление. Вследствие сказанного разработчики часто сталкивались с тем, что разделительные фильтры, обеспечивающие в идеализированных условиях требуемые характеристики, оказывались неприемлемыми при работе с реальными громкоговорителями, имеющими собственные амплитудно-частотные и фазочастотные искажения, комплексное входное сопротивление и обладающими направленными свойствами. Это и явилось причиной интенсификации в последние годы работ по созданию оптимизационных методов расчета разделительных фильтров-корректоров.

Выбор частот разделения
Как уже было отмечено, разделительные фильтры оказывают существенное влияние на такие характеристики многополосных акустических систем, как АЧХ, ФЧХ, ГВЗ, характеристики направленности, распределение мощности входного сигнала между излучателями, входное сопротивление акустической системы, уровень нелинейных искажений.

Начальным этапом в проектировании разделительных фильтров в многополосных акустических системах является обоснованный выбор частот разделения (частот среза) низкочастотного, средне-частотного и высокочастотного каналов. При выборе частот разделения обычно используют следующие предпосылки.

1. Обеспечение возможно более равномерных характеристик направленности, то есть отсутствия "скачков" ширины диаграммы направленности при переходе от низкочастотного к среднечастотному и от средне- к высокочастотному громкоговорителю, поскольку в той области частот, где они работают вместе, при отсутствии фильтра, диаграмма направленности резко сужается за счет расширения площади излучения.

2. Сохранение плавного изменения ширины характеристики направленности (по той же причине). Громкоговорители стараются размещать как можно ближе друг к другу и располагать их друг над другом в вертикальной плоскости (что позволяет избежать искажений характеристики направленности в горизонтальной плоскости, так как это отрицательно сказывается на воспроизведении стереопанорамы). Если выбор частоты разделения и расстояния между громкоговорителями влияет на ширину характеристики направленности, то соотношение фаз и амплитуд сигналов разделяемых частотных каналов влияет на ориентацию характеристики направленности в пространстве. Различные типы фильтров, как будет показано далее, в разной степени влияют на наклон характеристики направленности в пространстве в области частот разделения.

3. Ослабление пиков и провалов на АЧХ громкоговорителей, возникающих из-за потери поршневого характера движения диффузора. Выбор частоты среза и крутизны спада АЧХ фильтров для низкочастотных и среднечастотных громкоговорителей стараются осуществлять таким образом, чтобы первые резонансные пики и провалы ослаблялись не менее, чем на 20 дБ.

4. Ограничение амплитуды смещения подвижных систем средне- и высокочастотных громкоговорителей в низкочастотной части излучаемого ими спектра (и, соответственно, подводимой мощности) до значений, определяемых их механической и тепловой прочностью, что повышает надежность их работы и снижает уровень нелинейных искажений. Эти задачи регулируются как выбором частоты среза, так и выбором крутизны среза, которая должна составлять не менее 12 дБ/окт.

5. Обеспечение требуемого уровня звукового давления, поскольку с повышением частоты среза в области высоких частот можно увеличить уровень подаваемого напряжения, например, на высокочастотный громкоговоритель (поскольку амплитуды смещения диффузора с повышением частоты понижаются). Это позволяет увеличить, соответственно, уровень звукового давления в высокочастотной части АЧХ.

6. Снижение уровня нелинейных искажений, в частности, за счет эффекта Доплера (возникающих при модуляции высокочастотных составляющих низкочастотными компонентами сигнала).

Как правило, частоты среза в современных трехполосных акустических системах находятся в пределах: для низкочастотного громкоговорителя - 500...1000 Гц, для среднечастотного - от 500...1000 Гц до 5000...7000 Гц, для высокочастотного - 2000...5000 Гц.

Влияние на суммарные характеристики
Анализ влияния разделительных фильтров на формирование суммарных АЧХ, ФЧХ и других характеристик акустических систем удобно производить на некоторой идеализированной модели, в которой предполагается, что громкоговорители имеют активное сопротивление и идеальные характеристики (плоская АЧХ, линейная ФЧХ, постоянный сдвиг фаз между излучателями и др.). При расчете фильтров необходимо предварительно выбрать частоту среза (как уже было показано ранее), порядок и тип фильтра (Баттерфорта, Чебышева, Линквитца-Риле или др.).

По получаемым суммарным характеристикам фильтры, обычно применяемые в акустических системах, можно разделить на три группы: фильтры линейно-фазовые (in-phase), фильтры всепропускающие-(all-pass) и все остальные.

Фильтры линейно-фазовые (in-phase) обеспечивают частотно-независимую суммарную АЧХ, линейную ФЧХ (точнее, равную нулю на всех частотах), а также равную нулю ГВЗ. Примером могут служить фильтры Баттерворта первого порядка. Суммарные характеристики для двухполосной системы с такими фильтрами показаны на рис. 6. Опыт их использования в акустических системах показал, что они обладают рядом недостатков: плохой избирательной способностью, большой неравномерностью характеристик мощности сигнала, плохой характеристикой направленности в полосе раздела и др. Поэтому в настоящее время они в акустических системах категории Hi-Fi не применяются.

Фильтры всепропускающие (all-pass) обеспечивают плоскую суммарную АЧХ, частотно-зависимые ФЧХ и ГВЗ. Требования к линейности ФЧХ является избыточным для акустических систем - достаточно, чтобы их ГВЗ были ниже порогов слышимости (как показывают результаты измерений, фильтры такого типа вносят искажения ГВЗ в полосе раздела, удовлетворяющие этим требованиям). К этому типу фильтров относятся фильтры Баттерворта нечетких порядков и фильтры Линквица-Риле четных порядков. При этом свойства фильтров реализуются при разной полярности включения каналов: для 2, 6, 10 порядков требуется включение каналов в противофазе, для 4, 8, 12 - нет. Для нечетных порядков: 1, 5, 9 должны включаться синфазно, 3,7… -противофазно. Суммарные и поканальные характеристики фильтров Линквица-Риле второго порядка и Баттерворта третьего порядка для двухканальной идеализированной акустической системы показаны на рис. 7 и рис. 8. Следует отметить (будет показано далее), что фильтры нечетких порядков создают поворот главного лепестка характеристики направленности в области частоты раздела.

Существует довольно большой класс фильтров, которые применяются в акустических системах, но они не относятся к "всепропускающему" типу. Сюда включаются фильтры второго и четвертого порядка Баттерворта, второго и четвертого порядка Бесселя, группа ассиметричных фильтров четвертого порядка Лежандра, Гаусса и др. Они не дают суммарную плоскую характеристику, но этот недостаток можно частично исправить, если сделать частоты среза между громкоговорителями несовпадающими. Например, на рис. 9а показаны характеристики фильтра Баттерворта четвертого порядка с пиком АЧХ в 3 дБ на частоте раздела, равной 1000 Гц. Если несколько разнести частоты, то есть сделать частоту раздела для НЧ 885 Гц, а для ВЧ 1138 Гц, то пик на АЧХ исчезает (рис. 9б).



Как уже было сказано, выбор типов фильтров для низко-, средне- и высокочастотного громкоговорителя кроме обеспечения плоской АЧХ в полосах раздела, определяется требованием к обеспечению симметричности характеристики направленности акустической системы.

Внутри полосы пропускания каждого фильтра характеристика направленности акустической системы определяется характеристикой направленности каждого громкоговорителя, но внутри полосы раздела (полосы перекрытия фильтров) они работают совместно, то есть имеются два излучателя (например, средне и высокочастотный), которые разнесены в пространстве и работают на одной и той же частоте раздела. Пример такой системы показан на рис. 10. Пусть для простоты это будут два одинаковых излучателя, работающих в поршневом режиме с одинаковыми характеристиками направленности. На оси OA сигналы приходят в одинаковой фазе и складываются. Если оценить звуковое давление на оси OA", где фазовый сдвиг за счет разности пути от одного и другого громкоговорителя составит φ=π (то есть 180 град), то сигналы будут складываться в противофазе и на характеристике направленности появится провал. При дальнейшем сдвиге от оси в точках, где разница фаз составит 2π (то есть 360 град), опять появится пик. В целом характеристика направленности будет иметь трехлепестковый характер (рис. 10).

Ширина главного лепестка характеристики направленности на частоте раздела зависит от отношения расстояния между громкоговорителями к длине волны, а наклон лепестка зависит от соотношения амплитуд и фаз разделяемых каналов, что определяется также и типом выбранных фильтров.

Для уменьшения этого явления надо стараться уменьшить расстояние между громкоговорителями (например, за счет применения коаксиальных громкоговорителей), уменьшить ширину полосы раздела (за счет выбора фильтров более высоких порядков) и, наконец, выбрать соответствующий тип фильтра, поскольку каждый фильтр вносит свои частотно-зависимые фазовые сдвиги.

Например, при использовании фильтров третьего порядка типа Баттерворта происходит поворот главного лепестка характеристики направленности вниз (при включении громкоговорителей в одинаковой фазе), рис. 11. При включении громкоговорителей в противофазе (то есть изменении их полярности) лепесток характеристики направленности смещается в другую сторону относительно оси.

Анализ фильтров различных типов и порядков показал, что фильтры четных порядков (всепропускающего типа) не изменяют симметричности направления лепестков, фильтры нечетных порядков поворачивают лепесток вниз или вверх. Симметричные характеристики направленности обеспечивают наибольшую равномерность излучаемой акустической мощности.

Помимо влияния на характеристику направленности по АЧХ фильтры могут оказывать влияние на фазочастотные характеристики и ГВЗ в полосе раздела. То есть характер переходных процессов, несмотря на симметрию АЧХ, может отличаться при одинаковых углах смещения в верхней и нижней полуплоскости, и ГВЗ, будучи ниже порогов слышимости на оси, могут превосходить пороги слышимости в других точках пространства, тем самым ухудшая качество звучания.

Следует еще раз напомнить, что все сделанные выводы относятся только к случаю идеальных характеристик громкоговорителей. Учет реальных характеристик производится с помощью современных компьютерных программ.

Расчет пассивных акустических фильтров
Приступая к расчету пассивных акустических фильтров, необходимо уже четко определиться с конфигурацией системы (количеством полос воспроизведения, типами головок громкоговорителей и их параметрами, видом оформления - корпуса), а также выбрать порядок и тип фильтров в зависимости от основных задач, которые должны решаться при проектировании акустической системы: плоская АЧХ, линейная ФЧХ, симметричная характеристика направленности и др.

Поскольку в настоящее время в акустических системах чаще всего применяются фильтры типа "всепропускающих" (all-pass) с плоской АЧХ, то приведем приближенный расчет такого типа фильтров (более точные расчеты выполняются компьютерными методами).

Сначала разделительные фильтры рассчитываются из условия, что они нагружены на чисто активное сопротивление и питаются от генератора напряжения с малым выходным сопротивлением. Затем принимаются меры для учета влияния комплексной частотно-зависимой нагрузки громкоговорителей.

Расчет начинается с определения порядка фильтров и расчета элементов фильтра-прототипа. Фильтром-прототипом называется фильтр лестничного типа, элементы которого нормированы относительно единичной частоты среза и единичной нагрузки. Затем рассчитывается фильтр нижних частот для реальной частоты среза и реальной нагрузки, а из него путем преобразования частоты находятся элементы фильтра верхних частот и полосового фильтра.

Нормированные значения элементов фильтров-прототипов с первого по шестой порядок приведены в таблице 1.

Значения этих элементов даны только для фильтров "всепропускающего" типа, для других типов фильтров значения элементов в таблице будут другими. Схема фильтра-прототипа шестого порядка представлена на рис. 12. Фильтры меньших порядков получаются путем отбрасывания соответствующих элементов α (начиная с больших).

Значения реальных параметров фильтров для заданного порядка, сопротивления нагрузки R н (Ом) и частоты среза f i (Гц) определяются следующим образом.

1. Для фильтра нижних частот:
- каждая индуктивность-прототип α1 , α3 , α5 (рис. 12) заменяется на реальную индуктивность по формуле L=αi Rн/2πf1 ,(1) где i=1,3,5, f1 - частота среза фильтра нижних частот;
- каждая емкость-прототип α2 , α4 , α6 заменяется на реальную емкость по формуле C=αi /2πf1 Rн,(2) где i=2,4,6.

2. Для фильтра верхних частот (расчет происходит наоборот):
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на реальную емкость C=1/2πf2 Rнαi ,(3) где i=1,3,5, f2 - частота среза фильтра верхних частот;
- каждая емкость-прототип заменяется на реальную индуктивность L=Rн/2πf2 αi ,(4) где i=2,4,6.

3. Для полосового фильтра:
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на последовательный контур из реальных L- и C-элементов, рассчитываемых по формулам:
L=αi Rн/2π(f2 -f1 ),(5) С=1/4π2 f0 2 L,(6)
где - средняя частота полосового фильтра;
- каждая емкость-элемент α2 , α4 , α6 заменяется на параллельный контур из реальных L- и C-элементов, рассчитываемым по формулам:
С=αi /2π(f2 -f1 )Rн,(7) L=1/4π2 f0 2 C.(8)

Пример расчета разделительных фильтров для трехполосной АС

Для расчета выбираем следующие параметры: фильтры всепропускающего типа второго порядка, то есть схема фильтра-прототипа будет включать только элементы α1 , α2 , Rн (рис. 12). Частоты раздела между низкочастотным и среднечастотным каналами равны 500 Гц, между средне- и высокочастотным каналами равны 5000 Гц. Сопротивление громкоговорителей (на постоянном токе): низкочастотного и среднечастотного Re=8 Ом, высокочастотного Re=16 Ом. Значение нормированных параметров элементов определим из табл. 1: α1 =2,0, α2 =0,5.

Значения реальных элементов фильтра нижних частот находим по выражениям (1) и (2):
L1НЧ = α1 Rн/2πf1 = 2,0∙8,0/(2∙3,14∙500) = 5,1 мГн,
C1НЧ = α1 /2πf1 Rн = 0,5/(2∙3,14∙500∙8,0) = 20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями (5)... (8):
L1СЧ = α1 Rн/2π(f2 -f1 ) = 2,0∙8,0/2∙3,14 (5000 - 500) = 0,566 мГн,
C1СЧ =1/4π2 f0 2 L = 1/4∙3,142 ∙5000∙500∙5,66∙10-4 = 18 мкФ,
С2СЧ = α2 /2π(f2 -f1 ) Rн = 0,5/2∙3,14 (5000-500) ∙8,0 = 2,2 мкФ,
L2СЧ =1/4π2 f0 2 C2СЧ = 1/4∙3,142 ∙5000∙500∙2,2∙I0-6 = 4,6 мГн.

Значения элементов фильтра верхних частот определяем в соответствии с выражениями (3,4):
С1ВЧ = 1/2πf2 Rн α1 = 1/(2∙3,14∙5000∙2,0∙16) = 1,00 мкФ,
L2BЧ = Rн/2πf2 α2 = 16/(2∙3,14∙5000∙2,0) = 0,25 мГн.

Расчеты, выполненные по этим формулам, корректны, только если фильтры нагружены на активное (омическое) сопротивление. Чтобы согласовать параметры фильтров с реальным комплексным сопротивлением громкоговорителей, надо включить дополнительно параллельно каждому громкоговорителю согласующую цепь. Параметры такой цепи находятся из условия, чтобы комплексное сопротивление этой цепи Zсогл и комплексное сопротивление громкоговорителя Zгг компенсировали друг друга при параллельном включении и обеспечивали бы в сумме активное сопротивление, то есть 1/ Zсогл+1/ Zгг=1/Re.

Для расчета элементов такой цепи строится эквивалентная электрическая схема громкоговорителя (см. предыдущую статью в декабрьском номере МО за 2008 год), и по отношению к ней создается дуальная компенсирующая цепь. Схема эквивалентной цепи громкоговорителя и соответствующей компенсирующей цепи показаны на рис. 13. Для компенсации входного сопротивления низкочастотного громкоговорителя можно использовать упрощенную цепь (поскольку резонанс громкоговорителя находится значительно ниже частоты среза фильтра и не оказывает влияния на его параметры), состоящую из двух элементов Rk1 =Re и Ck1 =Lvc/Re2 , где Re и Lvc - сопротивление и индуктивность звуковой катушки громкоговорителя.

Для средне- и высокочастотного громкоговорителя полная компенсирующая цепь включается, только если частота среза и резонансы громкоговорителей находятся близко друг от друга - в противном случае достаточно применять упрощенную цепь (расчет параметров полной цепи приведен в книге Алдошина И. А., Войшвилло А. Г. "Высококачественные акустические системы"). Кроме того, в схему иногда включаются дополнительно режекторные фильтры, чтобы убрать отдельные пики на амплитудно-частотной характеристике.

Пример схемы фильтров для трехполосной акустической системы с учетом согласующих цепей режекторного звена для среднечастотного громкоговорителя и дополнительного Г-образного аттенюатора, состоящего из двух резисторов для выравнивания уровней по звуковому давлению между НЧ-, СЧ- и ВЧ-громкоговорителями, показан на рис. 14.

В настоящее время для расчета фильтрующе-корректирующих цепей используются компьютерные методы оптимального синтеза линейных электронных схем. Для этого задаются структура фильтра и начальные значения элементов, затем производится расчет суммарных выходных значений АЧХ, ФЧХ и ГВЗ с учетом реальных измеренных параметров громкоговорителей, размещенных в корпусе, и путем целенаправленного изменения элементов схемы минимизируется разница между реальными и заданными параметрами. Применение методов оптимального проектирования позволяет обеспечить наилучшее широкополосное согласование параметров фильтров и громкоговорителей и получить оптимально достижимое значение параметров акустической системы.

Сейчас активно проводятся исследования по применению цифровых фильтров-процессоров в акустических системах, что позволяет перестраивать параметры системы в реальном времени в зависимости от вида звукового сигнала, а также обеспечивать оптимальное согласование характеристик акустической системы с параметрами помещения, но эта техника находится еще в начале своего развития и пока не нашла широкого применения в промышленных разработках.


Предлагаю обсудить тему активных фильтров для АС . Просьба высказаться тех, кто имеет практический опыт изготовления и прослушивания таких фильтров , а я покажу, что получилось у меня.

Активные фильтры , на мой взгляд, предпочтительны именно двухполосные, но для трехполосных АС. Частота раздела двухполосных АС всегда находится в области максимальной чувствительности слуха – несколько кГц т. к. пищалки не могут работать до частоты 100…500 Гц, а басовики из-за большого диаметра диффузора выходят из поршневого диапазона и на частотах 4…6 кГц работают неважно.
Широкополосники – компромисс и для них желательны костыли сверху или снизу.

Итак, на частотах раздела порядка 2 кГц прилично работают пассивные фильтры , а при работе микросхем на этих частотах, а особенно порядка 6 кГц (раздел между СЧ и ВЧ), могут возникнуть трудности. На частотах раздела в сотни Гц обычные микросхемы в активных фильтрах работают очень хорошо.
Итак, делим звуковой диапазон на НЧ и СЧ-ВЧ на частотах 100…500 Гц, а СЧ-ВЧ делим простейшим пассивным фильтром первого порядка.


На фото собранной платы (вверху) впаяны не все зажимы – просто они закончились.
Питание +-12…15 В. На схеме не указаны конденсаторы по питанию.
Настройка по постоянному току не требуется.

Изыскания и испытания

У меня есть динамики, которые я хочу использовать в НЧ звене, в штатных колонках был фильтр, с которым они работали до 150 Гц, при этом катушка пассивного фильтра была 7,5 мГн, конденсаторы соответствующей ёмкости. Намотать такие катушки для динамика 4 Ом проблематично, качественные неполярные конденсаторы очень большой ёмкости весьма дороги, поэтому я решил сделать активные фильтры.


Измеренная АЧХ моих динамиков

Кроме того активные фильтры незаменимы при значительной разнице в чувствительности головок, они позволяют использовать низкочувствительные НЧ динамики с высокочувствительными СЧ-ВЧ головками.
Из АЧХ головки видно, что нет смысла ловить микроны и добиваться именно 150 Гц, вполне годится 100…250 Гц.

Окончательная подстройка должна производиться при прослушивании собранных колонок и измерении с помощью микрофона. Такую подстройку проще осуществить именно активными фильтрами, в чем я и убедился при настройке фильтров.
Сначала я снял ЧХ фильтра с рекомендованными номиналами деталей, вот что получил.


АЧХ оригинальной схемы фильтра


На частоте раздела горбы, которые в сумме дают 6 дБ, что, я считаю, слишком много.
Я думал, что установки подстроечного резистора R5 (на плате предусмотрел отверстия под подстроечный и постоянный резисторы), будет достаточно для настройки. Вот что получается при уменьшении R5.


Частота раздела сдвигается вверх, горб растет. Простое увеличение R5 не решает проблему, увы. Пришлось отойти от рекомендаций первоисточника и взяться за R4. Получилось!


Неравномерность около 1 дБ. При увеличении R5 частота раздела ползёт вниз, неравномерность уменьшается. При R4=12 кОм R5=54 кОм получаем.


Практически прямая линия суммарной АЧХ , всё отлично!

Забыл сказать, что я и 0 дБ – это ноль, общее усиление системы около -1 дБ (минус 13%), небольшая волнообразность ниже 40 Гц из-за примененного усилителя на К174УН14, ею можно пренебречь. Недостаток – частота раздела стала 63 Гц вместо 150. Отсюда я сделал вывод, что надо установить конденсаторы мЕньшей ёмкости, в плате я предусмотрел отверстия для них, и заново произвести настройку.

Тем не менее, результат, особенно для испытаний меня устроил. По результатам испытаний я решу, стоит ли ловить блох в 1 дБ и стоит ли сама идея активных фильтров свеч. Промежуточный результат для R4=13 кОм и R5=16 кОм.


В итоге я установил номиналы деталей, как на схеме, вот что получилось. Частота раздела в норме, но неравномерность несколько возросла.

Без настройки впаял детали в другой канал, идентичность очень неплохая. Конденсаторы перед установкой я отбирал с точностью примерно 5%, резисторы не подбирал.

Уровень сигнала в СЧ-ВЧ канале больше примерно на 0,7 дБ, при суммировании я это учитывал. Окончательное выравнивание будет в оконечных усилителях.
Повторюсь, крутизна фильтров для СЧ-ВЧ небольшая, возможно, есть смысл в добавке конденсатора последовательно с СЧ-ВЧ головками, это покажет прослушивание.

Планы

На очереди изготовление и испытания фильтров Linkwitz-Riley 4-го порядка. Количество микросхем и сложность настройки на порядок больше, но есть возможность более тонкой подгонки под конкретные АС.

Файлы

Если найдутся желающие повторить конструкцию, привожу плату в формате lay.

Прежде подробного рассмотрения проблемы обрисуем круг задач, зная конечную цель, будет проще избрать нужное направление. Изготовление акустических систем своими руками нечастый случай. Практикуется профи, начинающими музыкантами, когда магазинные варианты не устраивают. Появляется задача встраивания в мебель или качественного прослушивания уже имеющейся медиа. Это типичные примеры, которые решаются набором общепринятых способов. Рассмотрением мы и займемся. Не рекомендуем листать по диагонали устройство акустической системы, вникайте!

Устройство акустических систем

Нет шансов сделать акустическую систему самостоятельно без понимания теории. Любителям музыки следует знать, что биологический вид Homo Sapiens слышит внутренним ухом звуковые колебания частот 16-20000 Гц. Когда дело касается классических шедевров, то разброс высок. Нижний край – 40 Гц, верхний – 20 000 Гц (20 кГц). Физический смысл этого факта заключается в том, что не все динамики способны воспроизвести сразу полный спектр. Относительно медленные частоты лучше удаются массивным сабвуферам, а пищание на нижней границе воспроизводят менее габаритные громкоговорители. Понятно, что для большинства людей это ничего не значит. И даже если часть сигнала пропадет, не будет воспроизведена, никто этого и не заметит.

Полагаем, что те, кто поставил целью самостоятельное изготовление акустической системы, должны критично оценивать звук. Полезно будет знать, что годная колонка имеет два и более динамиков, чтобы иметь возможность отразить звучание обширной полосы из слышимого спектра. А вот сабвуфер даже в сложных системах один. Это связано с тем, что низкие частоты заставляют вибрировать окружение, проникая даже сквозь стены. Становится непонятным, откуда именно несутся басы. Следовательно, и колонка НЧ одна – сабвуфер. А вот что касается прочего, то человек уверенно скажет, с какого направления пришел тот или иной спецэффект (луч ультразвука блокируется ладонью).

В связи со сказанным проведем делением акустических систем:

  1. Звук в формате Моно непопулярен, поэтому избегаем касаться исторических экскурсов.
  2. Звучание Стерео обеспечивается двумя каналами. Оба содержат низкие и высокие частоты. Лучше подойдут равноценные колонки, снабженные парой динамиков (басы и писк).
  3. Звук Вокруг отличается наличием большего числа каналов, создающих эффект объемного звучания. Избегаем увлекаться тонкостями, традиционно 5 колонок плюс сабвуфер доносят гамму меломанам. Конструкция многообразна. Поныне ведутся исследования, ставящими целью улучшить качество передачи акустики. Расстановка традиционная такова: по четырем углам комнаты (грубо говоря) по колонке, сабвуфер стоит на полу слева или в центре, под телевизором помещается фронтальная колонка. Последняя в любом случае снабжается двумя динамиками и более.

Важно создать правильный корпус для каждой колонки. Низкие частоты потребуют наличия деревянного резонатора, для верхней границы диапазона — не важно. В первом случае бока ящика служат дополнительными излучателями. Найдете видео, демонстрирующее габаритные размеры, соответствующие длинам волн низких частот по науке, практически остается копировать готовые конструкции, дельной литературы тематика лишена.

Круг задач очерчен, читатели понимают — самодельная акустическая система строится следующими элементами:

  • набор динамиков частот сообразно числу каналов;
  • фанера, шпон, доски корпуса;
  • декоративные элементы, краска, лак, морилка.

Проектирование акустики

Изначально выбираем количество колонок, тип, местоположение. Очевидно, изготавливать в большем числе, нежели имеет каналов домашний кинотеатр, неразумный тактический ход. Кассетному магнитофону хватит двух колонок. К домашнему кинотеатру выйдет уже не менее шести корпусов (динамиков будет больше). Согласно потребностям аксессуары встраиваются в мебель, качество воспроизведения низких частот хромает. Теперь вопрос выбора динамиков: в издании авторства Найденко, Карпова приведена номенклатура:

  1. Низкие частоты – головка CA21RE (H397) посадкой на 8 дюймов.
  2. Средний диапазон – головка MP14RCY/P (H522) на 5 дюймов.
  3. Верхние частоты – головка 27TDC (H1149) на 27 мм.

Приводили базовые принципы конструирования акустических систем, предлагали электрическую схему фильтра, рассекающего поток на две части (выше дан перечень трех поддиапазонов), приводили название покупных динамиков, решающих задачу создания двух колонок стерео. Избегаем повторяться, читатели могут взять труд полистать раздел, найти конкретные названия.

Следующим вопросом будет фильтр. Полагаем, фирма National Semiconductor не обидится, если отскриним чертеж усилителя перевода Ридико. Рисунок показывает активный фильтр с питанием +15, -15 вольт, 5 однотипных микросхем (операционных усилителей), граничная частота поддиапазонов вычисляется формулой, приведенной на изображении (дублируем текстом):

П – число Пи, известное школьникам (3,14); R, C – номиналы резистора, емкости. На рисунке R = 24 кОм, С — замалчивается.

Активный фильтр, питаемый электрическим током

Учитывая возможности выбранных динамиков, читатель сможет подобрать параметр. Берутся характеристики полосы воспроизведения колонки, находится стык перекрытия между ними, туда выносится граничная частота. Благодаря формуле, вычисляем величину емкости. Номинал сопротивления избегайте трогать, причина: может (спорный факт) задавать рабочую точку усилителя, коэффициент передачи. На частотной характеристике, приведенной в переводе, которую опускаем, граница составляет 1 кГц. Давайте посчитаем емкость указанного случая:

С = 1 / 2П Rf = 1 / 2 х 3,14 х 24000 х 1000 = 6,6 пФ.

Не ахти какая большая емкость, выбирается из условия максимально допустимого напряжения. В схеме с источниками +15 и -15 В вряд ли стоит номинал, превышающий суммарный уровень (30 вольт), возьмите пробивное напряжение (справочник поможет) не менее 50 вольт. Не пытайтесь поставить электролитические конденсаторы постоянного тока, схема обретает шансы взлететь на воздух. Отсутствует смысл разыскивать исходную схему чипа LM833 по причине Сизифова труда. Некоторые читатели найдут замену микросхеме, отличающуюся… надеемся на понимание.

Насчет сравнительно небольшой емкости конденсаторов (рознично и суммарной) описание фильтра говорит: благодаря низкому импедансу головок без активных компонентов номиналы пришлось бы увеличить. Закономерно вызывая появление искажений, обусловленных наличием электролитических конденсаторов, катушек с ферромагнитным сердечником. Не стесняйтесь двигать границу деления диапазонов, общая пропускная способность остается прежней.

Пассивные фильтры соберет своими руками каждый обученный пайке, курс школьной физики. В крайнем случае заручитесь помощью Гоноровского, лучше некуда расписаны тонкости прохождения сигналов через радиоэлектронные линии, обладающие нелинейными свойствами. Приведенный материал заинтересовал авторов фильтрами низкой и высокой частоты. Желающие поделить сигнал на три части должны зачитываться трудами, раскрывающими базис полосовых фильтров. Максимально допустимое (или пробивное) напряжение выйдет мизерным, номинал станет значительным. Под стать упомянутым электролитическим конденсаторам емкости номиналом десятки микрофарад (три порядка выше используемых активным фильтром).

Новичков тревожит вопрос получения напряжения +15, -15 В питания акустических систем. Намотайте трансформатор (пример приводился, программа ПК Trans50Hz), снабдите двухполупериодным выпрямителем (диодный мост), профильтруйте, наслаждайтесь. Наконец, активный или пассивный фильтр прикупите. Называется указанная вещица кроссовером, внимательно подбирайте динамики, диапазоны точнее соотносите с параметрами фильтра.

Для пассивных кроссоверов акустических систем найдете в интернете множество калькуляторов (http://ccs.exl.info/calc_cr.html). Исходными цифрами программа расчета принимает входные сопротивления динамиков, частоту деления. Введите данные, программа-робот быстро снабдит величинами емкостей и индуктивностей. На приведенной страничке задавайте тип фильтра (Бесселя, Баттерворта, Линквица-Райли). На наш взгляд задачка для профи. Приведенный выше активный каскад образован фильтрами Баттерворта 2-го порядка (скорость снижения АЧХ 12 дБ на октаву). Касается частотной (АЧХ) характеристики системы, понятно только профессионалам. Если сомневаетесь, выбирайте золотую серединку. В прямом смысле ставьте галку на третьем кружке (Бессель).

Акустика компьютерных колонок

Довелось посмотреть на Ютуб видео: юноша объявил, что сделает акустическую систему своими руками. Отрок талантлив: раскурочил колонки персонального компьютера - ну, совсем никакие - извлек на свет Божий усилитель с регулятором, поместил в спичечный коробок (корпус акустической системы). Компьютерные динамики известны плохим воспроизведением низких частот. Сами устройства маленькие, легкие, во-вторых, буржуи материалами экономят. Откуда в акустической системе взяться басам. Юноша взял… читайте дальше!

Наидорожайший компонент музыкального центра. Акустика класса hi-end стоимостью обходит дешевую квартиру. Ремонт, сборка колонок неплохой бизнес.

Усилитель низкой частоты акустической системы соберет продвинутый радиолюбитель, никаких кулибиных не нужно. Из спичечного коробка торчит ручка регулятора громкости, вход с одной стороны, выход - с другой. Динамики старой акустической системы малы. Юноша раздобыл старенький громкоговоритель не сказочных размеров, но солидный. С колонки советских времен акустической системы.

Чтобы звук не тревожил воздух пищанием, умный отрок сколотил дюймовые доски ящиком. Динамик старенькой акустической системы поместил в размеров почтовой коробки, сместил, как это делается производителями современных сабвуферах домашних кинотеатров. Изнутри колонку звукоизолятором отделывать поленился. Желающий может использовать для акустической системы ватин, другой схожий материал. Маленькие динамики помещены вовнутрь продолговатых коробок, только-только вмещающих торцом громкоговоритель. Гордый отрок подключил один канал акустической системы на два маленьких динамика, второй - на один большой. Работает.

Юноша сказочный молодец, не пьет в подворотне, уподобляясь сверстникам, не портит в свободное время будущих невест, занят делом. Как говорил один знакомый: «Молодому поколению прощается недостаток знания и опыта, не избыток наглости, упроченного равнодушием».

Улучшения

Решили усовершенствовать методику, откровенно надеемся, дополнение поможет сделать акустическую систему самостоятельно несколько качественнее. Проблема? Понятие выдумано радиотехниками, создателями акустических систем — частота. Вибрация Вселенной имеет частоту. Говорят, даже ауре человека присуще. Каждая добротная колонка недаром вмещает несколько динамиков. Большие предназначены для низких частот, басов; прочие — для средних и высоких. Не только размер, а и устройство у них разное. Мы уже обсуждали этот вопрос и интересующихся отсылаем к написанным обзорам, где приводится классификация акустических систем, раскрываются принципы действия наиболее популярных.

Компьютерщикам известен системный зуммер, работающий по прерыванию BIOS, который способен вроде бы выдавать один звук, но талантливые программисты выписывали на нем вычурные мелодии, даже с попыткой цифрового синтеза и воспроизведения голоса. Однако при желании бас такая пищалка выдать не может.

К чему этот разговор… Большой динамик следовало бы не просто приспособить на один из каналов, а присудить специализацию басов. Как известно, большинство современных композиций (Звук Вокруг не берем) рассчитаны на два канала (стереовоспроизведение). Получается, что два одинаковых динамика (маленьких) играют одни и те же ноты, смысл в этом маленький. В то же время с этого же канала бас теряется, а высокие частоты гибнут на большом динамике. Как быть? Предлагаем внедрить в схему пассивные полосовые фильтры, которые помогут разбить поток на две части. Схему берем иностранного издания по той простой причине, что она первой попалась на глаза. Вот ссылка на исходный сайт chegdomyn.narod.ru. Радиолюбитель переснял из книги, приносим извинения автору, что не указываем первоисточник. Это происходит по той простой причине, что он нам не известен.

Итак, картинка. Бросаются сразу в глаза слова Woofer и Tweeter. Как не сложно догадаться, это, соответственно, сабвуфер для низких частот, и динамик для высоких. Охватывается диапазон музыкальных произведений 50-20000 Гц, причем на сабвуфер приходится полоса нижних частот. Радиолюбители могут сами по известным формулам просчитать полосы пропускания, для сравнения ля первой октавы, как известно, составляет 440 Гц. Считаем, что для нашего случая такое деление подойдет. Вот только хотелось бы найти два больших динамика, по одному на каждый канал. Смотрим схему…

Не совсем музыкальная схема. В положении, занимаемом системой, идет фильтрация голоса. Диапазон 300-3000 Гц. Переключатель подписан Narrow, переводится, как полоса. Чтобы получить Wide (широкое) воспроизведение, опускаем клеммы. Поклонники музыки могут выкинуть полосовой фильтр Narrow, любителям бороздить скайп рекомендуем избегать поспешного решения. Схеме напрочь исключит петлевой эффект микрофона, известный повсеместно: пронзительное гудение вследствие переусиления (положительной обратной связи). Ценный эффект, даже военный знает сложности использования громкой связи. Владелец ноутбука осведомлен…

Для устранения эффекта обратной связи изучите вопрос, найдите, на какой частоте резонирует система, отрежьте лишнее фильтром. Очень удобно. Касательно популярной музыки микрофон отключаем, уносим подальше от динамиков (случай караоке), начинаем петь. Фильтры верхних и нижних частот оставим неизменными, изделия просчитаны неизвестными западными друзьями. Испытывающим затруднения, читая иностранные чертежи, поясняем, схема изображает (полосовой фильтр Narrow отброшен):

  1. Емкость 4 мкФ.
  2. Неиндуктивные сопротивления R1, R2 номиналом 2,4 Ом, 20 Ом.
  3. Индуктивность (катушка) 0,27 мГн.
  4. Сопротивление R3 8 Ом.
  5. Конденсатор С4 17 мкФ.

Динамики должны соответствовать. Советы указанного сайта. Сабвуфером пойдет МСМ 1853, пищалкой (слово не списали) послужит РЕ 270-175. Полосы пропускания посчитаете самостоятельно. Большая буква Ω означает кОмы — ничего страшного нет, поменяйте номинал. Напоминаем, емкости параллельно соединенных конденсаторов складываются, как последовательно включенные резисторы. На случай, если сложно достать подходящие номиналы. Вряд ли получится изготовить динамики своими руками, набрать небольшие номиналы сопротивлений реально. Не используйте катушки, вырезаем пластины нихрома, подобных сплавов. После изготовления резистор лакируется, большого тока не планируется, защищать элемент не следует.

Индуктивности проще намотать самостоятельно. Логично использовать онлайн-калькулятор, задав емкость, получим параметры: количество витков, диаметр, материал сердечника, толщину жилы. Приведем пример, избегая быть голословными. Посещаем Яндекс, набираем нечто вроде «онлайн калькулятор индуктивности». Получаем ряд ответов выдачи. Выбираем понравившийся сайт, начинаем думать, как намотать индуктивность акустической системы номиналом 0,27 мГн. Нам понравился сайт coil32.narod.ru, начнем работу.

Исходные сведения: индуктивность 0,27 мГн, диаметр каркаса 15 мм, проволока ПЭЛ 0,2, длиною намотки 40 миллиметров.

Сразу возникает вопрос, видя калькулятор, где взять номинальный диаметр изолированной проволоки… Потрудились, нашли на сайте servomotors.ru таблицу, взятую из справочника, которую приводим в обзоре, считайте на здоровье. Диаметр меди составляет 0,2 мм, изолированной жилы – 0,225 мм. Скармливаем смело величины калькулятору, вычисляя нужные величины.

Получилась двухслойная катушка, числом витков 226. Длина провода составила 10,88 метра сопротивлением порядка 6-ти Ом. Главные параметры найдены, начинаем мотать. Самодельная акустическая система выполняется в ручной работы корпусе, примостить фильтр место найдется. К одному выходу подключаем пищалку, к другому – сабвуфер. Пару слов касательно усиления. Может статься, каскад усилителя не потянет четыре динамика. Каждая схема охарактеризована некой нагрузочной способностью, выше нельзя подпрыгнуть. Устройство акустической системы рассчитано, учитывая фиксированный запас, чтобы согласовать нагрузку, часто применяется эмиттерный повторитель. Каскад, заставляющий схему работать, полная отдача на любой динамик.

Напутствие начинающим конструкторам

Считаем, помогли читателям понять, как правильно конструировать акустическую систему. Пассивные элементы (конденсаторы, резисторы, катушки индуктивности) сможет достать, изготовить каждый. Осталось собрать корпус акустической системы своими руками. А за этим, верим, дело не станет. Важно понять, музыка сформирована гаммой частот, обрезаемых неправильным изготовлением устройства. Собравшись сделать акустическую систему, подумайте над этим, поищите компоненты. Важно передать великолепие мелодии, будет твердая уверенность: труд не пропал даром. Акустическая система прослужит долго, радость подарит.

Верим, изготовление акустических систем своими руками читателям будет в удовольствие. Грядущее время уникально. Поверьте, в начале XX века нельзя было черпать информацию тоннами ежедневно. Обучение выливалось тяжким кропотливым трудом. Приходилось обшаривать пыльные полки библиотек. Возрадуйтесь интернету. Страдивари пропитывал древесину скрипок уникальным составом. Скрипачи современности продолжают выбирать итальянские экземпляры. Вдумайтесь, прошло 30 лет, воз остался позади.

Нынешнему поколению известны марки клеев, наименования материалов. Необходимое продается магазинами. СССР лишил изобилия людей, снабдив относительной стабильностью. Сегодня преимущество описывается возможностью изобретения уникальных способов заработка. Профессионал-самоучка везде срубит капусты.

Валентин и Виктор ЛЕКСИНЫ======

Вопрос, поставленный авторами в заголовке статьи, вообще говоря, не нов. Во времена ламповой техники двухполосные усилители НЧ были не редкостью. Предпочтение, отдавав­шееся таким усилителям, кроме умень­шения интермодуляционных искаже­ний, обусловливалось в значительной степени трудностями изготовления широкополосных выходных трансфор­маторов, согласующих усилительный тракт с громкоговорителем.

Пришедшие на смену лампам тран­зисторы сняли проблемы выходного трансформатора и за довольно корот­кое время позволили создать широко­полосные усилители с весьма высоки­ми характеристиками: рабочим диа­пазоном частот от единиц герц до десятков килогерц, коэффициентом гармоник порядка сотых и даже тысяч­ных долей процента и т. д. В результа­те у многих радиолюбителей и специа­листов сложилось мнение, что чуть ли не единственный путь к достижению высококачественного звуковоспроизве­дения - это дальнейшее совершенст­вование широкополосного усилитель­ного тракта, создание усилителя с практически идеальными характеристи­ками. Однако, как убедительно дока­ зывают авторы статьи, этот путь не самый простой и, главное, не самый зффективный.

Верность звучания во многом зави­сит от громкоговорителя. А здесь до­стижения более скромны, чем в схемо­технике усилителей. Широкополосных головок, одинаково хорошо преобра­зующих электрические колебания в звуковые во всем диапазоне частот, притом с малыми нелинейными и ин­термодуляционными искажениями, по­ка что нет, а многополосным громко­говорителям свойствен ряд существен­ных недостатков, обусловленных при- менеюгем в них пассивных раздели­тельных фильтров. В этой ситуации су­щественно улучшить качество звуко­воспроизведения можно только при использовании многополосного усили­теля с разделительными фильтрами иа входе.

Особо следует отметить и такое, по­ка что еще очень важное для радиолю­бителей преимущество многополос­ных усилителей, как возможность их изготовления из доступных деталей.

Описание любительского трехполос­ного усилителя мощности редакция намечает опубликовать в одном из сле­дующих номеров журнала.

Приступая к разработке высоко­качественного звуковоспроизво­дящего комплекса, радиолюби­тели нередко сосредоточивают все вни­мание на достижении близких к идеаль­ным параметров электрического тракта, в частности такого его звена, как широкополосный усилитель мощности. Стремление получить минимальные ис­кажения всех видов при сравнительно большой (несколько десятков ватт) выходной мощности и достаточном за­пасе устойчивости приводит обычно к созданию сложных как в схемном, так и в конструктивном отношении устройств. Тем не менее даже с таким усилителем мощности качество звуко­воспроизведения во многих случаях получается недостаточно высоким. При­чина здесь - в игнорировании того в общем-то известного факта, что ка­чество звучания во многом определяет­ся параметрами громкоговорителя. По­лученные при испытаниях на чисто активной нагрузке высокие параметры усилителя часто не реализуются при согласовании с громкоговорителем. Именно поэтому одной из важнейших задач становится схемотехническое усо­вершенствование усилителя мощности для улучшения его согласования с гром­коговорителем.

Проблем здесь несколько. Одна из них - необходимость хорошего элек­трического демпфирования подвижной системы низкочастотной динамической головки громкоговорителя. Только при выполнении этого условия воспроизве­денный ею звуковой импульс будет иметь те же форму и длительность, что и электрический. Хорошо демпфиро­ванный громкоговоритель почти безы­нерционно возбуждается электриче­ским сигналом и прекращает излучение звуковых колебаний сразу после его окончания. При недостаточном демпфи­ровании подвижная система головки продолжает колебаться еще некоторое время и после снятия сигнала, но уже не с его частотой, а с частотой собствен­ного резонанса. В результате возникает неравномерность АЧХ громкоговори­теля по звуковому давлению. На слух это воспринимается как характерное «бубнение».

Для ускорения затухания свободных колебаний подвижной системы головки обычно используют шунтирование зву­ковой катушки малым выходным сопро­тивлением усилителя мощности. Но здесь-то и возникает проблема - вклю­чение пассивных разделительных филь­тров между выходом усилителя и дина­мическими головкамн многополосного громкоговорителя ухудшает электри­ческое демпфирование.

Другая проблема - в трудности соз­дания разделительных фильтров, к ко­торым предъявляются требования высо­кой крутизны скатов АЧХ звеньев, ма­лой неравномерности суммарной АЧХ и линейности ФЧХ в полосе пропуска­ния. Первое из этих требований обу­словлено резким ухудшением характе­ристик динамических головок на краях их номинальных диапазонов частот. Особенно это относится к средне- и высокочастотным головкам, у которых перекрытие номинальных диапазонов воспроизводимых частот, как правило, сравнительно невелико. Именно поэто­му разделительные фильтры для этих головок должны обладать АЧХ с кру­тыми скатами: при октавном (относи­тельно частоты раздела соседних полос) запасе по номинальному диапазону воспроизводимых частот необходимо применять фильтры с крутизной ската АЧХ не менее 12 дБ на октаву. Простейшие фильтры с крутизной 6 дБ на октаву можно использовать лишь в том случае, если запас по частоте составляет не менее двух октав.

Следует иметь в виду, что не все фильтры с высокой крутизной скатов АЧХ обеспечивают малую неравномер­ность суммарной АЧХ. С этой точки зрения наиболее подходят для приме­нения в многополосных громкоговори­телях так называемые фильтры Баттерворта первого (крутизна 6 дБ на октаву) и третьего (18 дБ на октаву) порядков, сопряженные по уровню -3 дБ (0,707). Часто используемые фильтры этого типа второго порядка (12 дБ на октаву) имеют недостаток: при синфазном включении соседних по частоте динамических головок в сум­марной АЧХ появляется провал до нуля, а при противофазном - выброс на 3 дБ.

Типовые разделительные фильтры даже с ровной суммарной АЧХ нередко являются причиной возникновения фа­зовых искажений, влияние которых на форму выходного сигнала особенно проявляется вблизи частоты раздела fр. Это наглядно видно из рис. 1, где показаны изменения, которые претерпевает сигнал в виде симмет­ричных прямоугольных импульсов дли­тельностью, примерно равной 1/f р, пройдя через разделительный фильтр с нелинейной суммарной ФЧХ (рис. 1,г). Если на частоте раздела средне-и высо­кочастотной полос эти искажения до­пустимы, так как мало сказываются на качестве звучания, то в области частот раздела средне- и низкочастотной полос их желательно устранить, поскольку именно здесь сосредоточены наиболь­шие среднестатические уровни реаль­ного сигнала, и к тому же чувствитель­ность слуха максимальна.

Для неискаженной передачи сигна­лов импульсного характера, кроме ров­ной суммарной АЧХ, необходимо обес­печить одинаковую временную задерж­ку t з всех составляющих сигнала при прохождении через разделительный фильтр. Форма выходного импульсного сигнала для фильтра с линейной сум­марной ФЧХ (ее, в частности, можно получить, используя фильтры первого порядка) показана на рис 1. д.

Не менее важной проблемой при со­гласовании усилителя мощности с гром­коговорителем являются интерферен­ционные искажения звукового поля в зоне прослушивания, неизбежные при воспроизведении двумя головками ко­ лебаний в общей полосе частот. Если в одной полосе частот работают не­сколько головок, то для уменьшения интерференционных искажений в гори­зонтальной плоскости их необходимо расположить на одной вертикальной линии. Интерференция в вертикальной плоскости скажется на качестве зву­чания меньше, если головки разместить на уровне головы слушателя и повозможности ближе одну к другой. К со­жалению, полностью избавиться от по­добных искажений не всегда удается даже при использовании в каждой по­лосе частот всего по одной головке. В этом случае интерференция возникает в области частоты раздела, где сигналы, излучаемые, например, средне- и низко­частотной головками, близки по уровню. Интерференционные искажения отчет­ливо слышны при перемещении слуша­теля относительно громкоговорителя, излучающего синусоидальный сигнал, частота которого находится в области частоты раздела полос.

Для уменьшения влияния интерфе­ренции. помимо соблюдения электри­ческой полярности сигналов, целесооб­разно размещать все головки громко­говорителя на одной вертикальной ли­нии возможно ближе одну к другой и стремиться к тому, чтобы их звуковые катушки находились в одной фронталь­ной плоскости. Если по тем или иным причинам смещать головки в глубину корпуса громкоговорителя нежелатель­но, следует выбрать частоту раздела низко- и среднечастотной полос не­высокой. В этом случае взаимные фа­зовые сдвиги излучаемых головками колебаний будут достаточно малы н на качестве звучания скажутся меньше. Что касается фазовых сдвигов в об­ласти частоты раздела средне- и высоко­частотной полос, то бороться с ними значительно сложнее. Тем не менее их влияние на качество зву­чания можно ослабить, применив филь­тры с большой крутизной скатов АЧХ и выбрав частоту раздела достаточно высокой, т. е. вне диапазона среднестатического распределения наиболь­ших уровней звукового сигнала и наи­большей чувствительности слуха.

Все рассмотренные проблемы реша­ются проще и с лучшим эффектом при использовании многополосных усили­телей мощности с активными RC -фильтрами на входе вместо пассивных филь­тров, применяемых в громкоговорите­лях, предназначенных для работы с ши­рокополосным усилителем. К сожале­нию, среди радиолюбителей распростра­нено мнение, что, например, трехполос­ный усилитель мощности, втрое слож­нее и дороже однополосного. Но, если говорить о действительно высококачест­венном звуковоспроизведении, это да­леко не так, в чем нетрудно убедиться, если проанализировать весь комплекс вопросов разработки высококачествен­ного звуковоспроизводящего комплек­са с широкополосным усилителем мощ­ности. В самом деле, кроме недостатков, вытекающих из сказанного выше,- сложность расчета и построения пассив­ных разделительных фильтров выше первого порядка с равномерной сум­марной АЧХ и линейной ФЧХ, слож­ность согласования каждой из голо­вок громкоговорителя с выходом уси­лителя для получения равномерной суммарной АЧХ по звуковому давлению (используемые иногда для этой цели резистивные делители снижают КПД комплекса и ухудшают демпфирование), снижение степени демпфирования низ­ко- и среднечастотной головок из-за включения активной составляющей фильтра последовательно с низкоомной звуковой катушкой, потери мощности в пассивном фильтре и, наконец, необхо­димость изготовления крупногабарит­ных катушек индуктивности и приобре­тения конденсаторов большой емкости для разделительного фильтра, - одно­полосному усилению свойственен и такой недостаток, как необходимость иметь большой запас по выходной мощности. Дело в том, что реальный максимально допустимый уровень низко- и среднечастотных составляющих при воспроиз­ведении звуковой программы оказыва­ется значительно меньшим,чем получен­ный при налаживании усилителя по си­нусоидальному сигналу.

Наложенные на составляющие низких частот средне- и высокочастотные составляющие пер­выми достигают границ динамического диапазона усилителя мощности, и для того, чтобы они были воспроизведены без ограничения, однополосный усили­тель должен иметь примерно двойной (по сравнению с многополосным) за­пас выходной мощности. Важно также, чтобы однополосный усилитель имел малые интермодуляционные и так на­зываемые динамические интермодуля­ционные искажения.Для уменьшения последних приходится ограничивать глубину общей ООС, а это приводит к росту нелинейных искажений, ухуд­шению степени демпфирования громкоговорителя (из-за увеличения выход­ного сопротивления усилителя). Устра­нение этих недостатков приводит к зна­ чительному усложнению усилителя. На­конец, применение в широкополосном усилителе ЭМОС требует (для обеспе­чения устойчивости) введения RC -цепи, ограничивающей диапазон ее действия. Для компенсации возникающего при этом подъема АЧХ на низших частотах требуется дополнительная частотная коррекция усилителя мощности.

Указанные недостатки проявляются значительно слабее, а некоторые из них полностью отсутствуют в многопо­лосных усилителях мощности с актив­ными разделительными фильтрами на входе. Простые расчеты показывают, что по сравнению с одним (широко­полосным) усилителем многополосный при той же выходной мощности поз­воляет использовать более низкое на­пряжение питания. Следствием этого являются уменьшение габаритов усили­теля (благодаря использованию срав­нительно небольших по размерам низ­ковольтных электролитических конден­саторов в фильтре выпрямителя и для связи с нагрузкой, а также меньшим размерам теплоотводов транзисторов оконечных каскадов), увеличение его КПД, более широкие возможности вы­бора (по напряжению эмиттер - кол­лектор и частотным параметрам) всех транзисторов усилителя. В частности, в оконечном каскаде низкочастотного канала можно использовать недорогие германиевые транзисторы типов П210, П217 и т п, достоинство которых - малое напряжение насыщения эммитер - коллектор.

В многополосном усилителе мощ­ности разделительный фильтр ограни­чивает уровень высокочастотных со­ставляющих сигнала, поступающих на входы низко- и среднечастотного каналов, что отвечает известным рекоменда­циям по уменьшению динамических ннтермодуляцнонных искажений. В то же время высокочастотный канал имеет большой запас линейности амплитуд­ной характеристики, так как после ФВЧ уровень высокочастотных составляю­щих в соответствии со статистикой ре­ального музыкального сигнала очень мал, и динамические искажения здесь практически не возникают. Благодаря этому во всех каналах можно использо­вать простые усилители мощности с глубокими ООС.

В многополосных усилителях нет потерь мощности в разделительных фильтрах, имеются широкие возможностн в реализации активных разделительных фильтров высоких порядков с равномерной суммарной АЧХ. Воз­можно построение фильтров выше пер­вого порядка с линейной суммарной ФЧХ. Благодаря непосредственному (без фильтра) подключению головок к выходу усилителя не возникает проблемы с их электрическим демпфиро­ванием и согласованием по уровню звукового давления в каждой полосе частот (последнее делают простой установкой требуемых коэффициентов усиления каждого из усилителей).

Принципиальная схема возможного варианта активного разделительного фильтра для трехполосного усилителя мощности показана на рис. 2.

Для раз­деления ннзко- и среднечастотной полос использованы ФНЧ и так называе­мый фильтр дополнительной функции (ФДФ) на транзисторе V1. Выходной сигнал этого фильтра представляет со­бой разность между входным сигналом и сигналом, прошедшим через ФНЧ. Достоинства такого способа разделения полос - простота настройки и стабиль­ность характеристик (вследствие их автоматического сопряжения), равно­мерные суммарные АЧХ и ФЧХ, а сле­довательно, и идеальное воспроизведе­ние импульсных сигналов; недостатки - малая крутизна ската АЧХ ФДФ (6 дБ на октаву независимо от порядка ис­пользуемого ФНЧ) и «выбросы» на ней вблизи частоты среза, если порядок ФНЧ выше первого. Для уменьшения «выбросов» сопротивления резисторов R1 , R 2 и емкость конденсаторов С1, С2 выбраны одинаковыми. Часто­та раздела

Для разде ления средне- и высоко­частотной полос применены ФНЧ и ФВЧ четвертого порядка. Каждый из них составлен из двух (на транзисто­рах V 2. V 3 и V 4, V 5) соединенных последовательно фильтров Баттерворта второго порядка. Частота раздела выбрана как среднегеометрическое ме­жду нижней границей номинального диапазона частот высокочастотной и верхней границей диапазона среднечастотной головок.

АЧХ зв еньев разделительного фильт­ра изображены на рис. 3. Суммарная АЧХ фильтра не имеет ни провалов, ни «выбросов». В области наибольших среднестатистических уровней сигнала и наибольшей чувствительности слуха суммарная ФЧХ линейна, что важно для хорошего воспроизведения импуль­сных сигналов.

При использовании резисторов и конденсаторов с допускаемым отклоне­нием от номинальных значений не бо­лее ±5% фильтр настройки не требу­ет. Группа ТКЕ конденсаторов CI , С2, С5-С12- М47, М75, М750, M1 500 (С1 и С2 - могут быть и группы Н30).

В разработанном авторами устройст­ве применен недорогой комплект дина­мических головок, тип и число кото­рых в каждой полосе выбирались из условия обеспечения равномерной сум­марной АЧХ по звуковому давлению при примерно одинаковом - для наи­более полного использования напряже­ния питания - выходном напряжении полосных усилителей мощности. В каж­дом стереоканале использованы одна низкочастотная головка 6ГД-2 (среднее стандартное звуковое давление Р срст = 0,3 Па, полное сопротивление звуко­вой катушки (Z) на частоте 1 кГц - 8 Ом, две параллельно включенные среднечастотные головки 2ГД-22 (Р срст =0,2 Па. |Z | =15 Ом) и две со единенные последовательно высокочас­тотные головки 1ГД-3 (Р срст =0,3 Па, \Z \ =12,5 Ом)

Звуковое давление Р на расстоянии l (в метрах) от геометрического цент­ра симметрии отверстия излучателя рассчитывалось по формуле

где Рэ - электрическая мощность в ват­тах. При возбуждении головок каждой полосы сигналом, соответствующим их номинальной мощности звуковые давления на расстоянии 1 м получились следующие:

В низкочастот­ной полосе (одна головка) - Р = 2,32 Па при 6,9 В; в среднечастотной (две головки) - Р=1,8 Па при 5,5 В; в высокочастотной (две головки) - Р -1,9 Па при 7 В. Для создания равномерного звукового давления пришлось уменьшить напря­жение, подводимое к низкочастотной головке до значения V = 6.9 х 1,8/2,32=5,4 В. включив последова­тельно с ней резистор цепи ПОС по току.

Для исключения взаимовлияния сред­не- и низкочастотной головок, облегче­ния борьбы с интерференционными ис­кажениями и обеспечения возможности поворота осей отдельных излучателей в горизонтальной плоскости было вы­брано акустическое оформление в виде трех поставленных друг на друга неза­висимых ящиков в каждом стереокана­ле. Громкоговоритель низкочастотной полосы - фазоинвертор. Его корпус с внешними размерами 345 х 295 х 635 мм изготовлен из древесностру­жечной плиты толщиной 20 мм. Все стенки, кроме передней, оклены изнутри рубероидом, поверх которого наклеены листы из пенополиуретана (поролона) толщиной 20 мм. Свободный внутрен­ний объем корпуса (без головки и тун­неля фазойнвертора - 36 дм 3 . Головка 6ГД-2 закреплена в верхней части пе­редней панели. Расстояние от центра ее диффузора до плоскости верхней стенки корпуса составляет 150, а до центра туннеля - 240 мм. Внутренний диаметр туннеля - 55, длина - 185 мм. Частота настройки - 30 Гц.

Акустическое оформление средне- и высокочастотного громкоговорите­лей - закрытые ящики из фанеры тол­щиной 8 мм с внешними размерами соответственно 310x250x210 и 95 х125x175 мм. Головки этих громко­говорителей установлены одна над другой. Корпус среднечастотного гром­коговорителя заполнен ватой.

С выходами полосных усилителей громкоговорители соединены короткими проводами большого сечения.

Благодаря разделению полос на вхо­де и использованию головок с хорошей отдачей оказалось возможным приме­нить сравнительно маломощные по­лосные усилители (6 Вт - на низких, 4 Вт - на средних и 2 Вт - на высоких частотах) при невысоком напряжении питания (±14 В). Каждый стереоканал обеспечивает уровень звукового давле­ния около 100 дБ на расстоянии 1 м от акустической системы. Качество зву­чания достаточно высокое.

Электронная часть описываемой си­стемы (два трехполосных стереоканала с активными фильтрами и теплоотводами транзисторов выходных каска­дов) выполнена в виде единого блока размерами 350x160x35 мм.

При использовании головок с мень­шим значением Р ср.ст выходную мощ­ность полосных усилителей для полу­чения того же уровня звукового давле­ния необходимо, естественно, увели­чить. Например, если для низкочастот­ной полосы выбрана головка 25ГД-26 (Р ср. ст =0,15 Па), то выходная мощ­ность соответствующего усилителя дол­жна быть не менее 24 Вт. Однако пре­имущества многополосного усиления мощности ощутимы и здесь, так как широкополосный усилитель (с учетом потерь в пассивном фильтре громко­говорителя и запаса мощности для не­искаженного воспроизведения всех со­ставляющих сигнала) в этом случае должен был бы обладать выходной мощностью вдвое большей (а это по­требовало бы увеличения напряжения питания и применения более дорогой элементной базы).

Итак, комплексное рассмотрение во­просов согласования усилителя мощ­ности с громкоговорителем показывает, что для достижения действительно вы­сококачественного звучания приходится идти на значительное усложнение широ­кополосного усилителя. Многополосные усилители в этом отношении значитель­но проще и, что очень важно для подав­ляющего большинства радиолюбите­лей, могут быть собраны из доступных деталей. Учитывая это. а также прини­мая во внимание тот факт, что высокие качественные показатели многополос­ных систем при воспроизведении реаль­ных сигналов можно получить значи­тельно проще, чем при использовании одного, широкополосного усилителя, можно сделать вывод, что затраты вре­мени и средств на изготовление много­полосной системы не превысят затрат на постройку широкополосного усили­теля с многополосиым громкоговори­телем.

г. Москва

ЛИТЕРАТУРА

Иофе В. К., Корольков В. Г., Сапожков М А.

Справочник по акустике. Пол общ. ред. М. А. Сапожкова М. Связь. 1979.

Эфрусси М. М Громкоговорители и их применение М, Энергия 076 |МРБ вып 919).

Левннзон Г Л, Логинов А. В. Высококачественный усилитель низкой частоты М Энергия 1977 (МРБ. вып 95П

Relnhard С . Auf dem Weg zumOptimaleu Laut sprechersystem.- Funkschau 1977. № 3 s 115- - 117 ы

Lautsprccherkomblnalioncn - eleklrl" Welchen, Phascnfehler.- Funkschau, 1978. H > я 969-972 Nt 24, s . 1209-1212

Салтыков О. ЭМОС или отрицательное а д мое сопротивление? - Радио, 1981. № l.c 41. "5

Работа с Андроидом